This paper presents a novel tool path planning approach for polygonal mirror scanning based stereolithography (STL) process. Compared with traditional laser scanning and mask projection based STL process, the polygonal mirror scanning based process can build part with high surface quality and precision without losing the fabrication efficiency. As an emerging additive manufacturing (AM) process, no efficient tool path planning algorithm is available in current system. This paper presents a direct tool path planning algorithm without converting the three-dimensional model into two-dimensional contours. Different test cases are used to verify its efficiency and effectiveness. Compared with the commercial software, the proposed algorithm is several times faster. Physical parts are also built using the tool path generated by the proposed algorithm.

References

1.
Wohlers
,
T.
,
2013
,
Additive Manufacturing and 3D Printing State of the Industry
,
Wohlers Associates
,
Fort Collins, CO
.
2.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
10.1007/978-1-4419-1120-9.
3.
Bourell
,
D.
,
Leu
,
M.
, and
Rosen
,
D.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,”
NSF Workshop
, Arlington, VA, Mar. 30–31, pp.
16
18
.
4.
Monneret
,
S.
,
Loubere
,
V.
, and
Corbel
,
S.
, “
Microstereolithography Using a Dynamic Mask Generator and a Noncoherent Visible Light Source
,”
Int. Soc. Opt. Photonics
,
3680
, pp.
553
561
10.1117/12.341246.
5.
Niino
,
K. L. T.
, and
Nakagawa
,
T.
,
1999
, “
Multiple LED Photographic Curing of Models for Design Verification
,”
Rapid Prototyping J.
,
5
(
1
), pp.
6
11
.10.1108/13552549910251765
6.
Loose
,
K.
,
Niino
,
T.
, and
Nakagawa
,
T.
,
1999
, “
Raster-Based Exposure Through Multiple Parallel Beams in Stereolithography
,”
Rapid Prototyping J.
,
5
(
3
), pp.
103
111
.10.1108/13552549910278928
7.
Cheng
,
Y.-L.
,
Li
,
M.-L.
,
Lin
,
J.-H.
,
Lai
,
J.-H.
,
Ke
,
C.-T.
, and
Huang
,
Y.-C.
, “
Development of Dynamic Mask Photolithography System
,”
Proceedings of Mechatronics, 2005
, IEEE International Conference on ICM'05, Taipei, Taiwan, July 10–12, pp.
467
471
.
8.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators
, A
,
121
(
1
), pp.
113
120
.10.1016/j.sna.2004.12.011
9.
Bertsch
,
A.
,
Jezequel
,
J.
, and
Andre
,
J.
,
1997
, “
Study of the Spatial Resolution of a New 3D Microfabrication Process: The Microstereophotolithography Using a Dynamic Mask-Generator Technique
,”
J. Photochem. Photobiol.
, A
,
107
(
1
), pp.
275
281
.10.1016/S1010-6030(96)04585-6
10.
Bertsch
,
A.
,
Bernhard
,
P.
,
Vogt
,
C.
, and
Renaud
,
P.
,
2000
,
Rapid Prototyping of Small Size Objects
,”
Rapid Prototyping J.
,
6
(
4
), pp.
259
266
.
11.
EnvisionTEC
,” http://www.envisiontec.de.
12.
Mi
,
Y.
,
Crisfield
,
M. A.
,
Davies
,
G. A. O.
, and
Hellweg
,
H. B.
,
1998
, “
Progressive Delamination Using Interface Elements
,”
J. Compos. Mater.
,
32
(
14
), pp.
1246
1272
.10.1177/002199839803201401
13.
. “
Asiga
,” https://www.asiga.com
14.
Alfano
,
G.
, and
Crisfield
,
M. A.
,
2001
, “
Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Num. Methods Eng.
,
50
(
7
), pp.
1701
1736
.10.1002/nme.93
15.
Zhou
,
C.
,
Chen
,
Y.
, and
Waltz
,
R. A.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
131
(6), p.
061004
.10.1115/1.4000416
16.
Park
,
I. B.
,
Ha
,
Y. M.
, and
Lee
,
S. H.
,
2010
, “
Cross-Section Segmentation for Improving the Shape Accuracy of Microstructure Array in Projection Microstereolithography
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
151
161
.10.1007/s00170-009-2065-0
17.
Park
,
I.-B.
,
Ha
,
Y.-M.
, and
Lee
,
S.-H.
,
2011
, “
Still Motion Process for Improving the Accuracy of Latticed Microstructures in Projection Microstereolithography
,”
Sens. Actuators, A
,
167
(
1
), pp.
117
129
.10.1016/j.sna.2010.12.023
18.
Kang
,
H.-W.
,
Park
,
J. H.
, and
Cho
,
D.-W.
,
2012
, “
A Pixel Based Solidification Model for Projection Based Stereolithography Technology
,”
Sens. Actuators, A
,
178
, pp.
223
229
.10.1016/j.sna.2012.01.016
19.
Park
,
I.-B.
,
Ha
,
Y.-M.
,
Kim
,
M.-S.
,
Kim
,
H.-C.
, and
Lee
,
S.-H.
,
2012
, “
Three-Dimensional Grayscale for Improving Surface Quality in Projection Microstereolithography
,”
Int. J. Precis. Eng. Manuf.
,
13
(
2
), pp.
291
298
.10.1007/s12541-012-0036-0
20.
Yamazawa
,
K.
,
Niino
,
T.
,
Hayano
,
S.
, and
Nakagawa
,
T.
,
1997
, “
High Speed UV Laser Beam Scanning by Polygon Mirror
,”
Proceedings of Solid Freeform Fabrication Symposium Proceedings
, Center for Materials Science and Engineering, Mechanical Engineering Department and Chemical Engineering Department, The University of Texas at Austin, Austin, TX, p.
223
.
21.
Reedy
,
E. D.
,
Mello
,
F. J.
, and
Guess
,
T. R.
,
1997
, “
Modeling the Initiation and Growth of Delaminations in Composite Structures
,”
J. Compos. Mater.
,
31
(
8
), pp.
812
831
.10.1177/002199839703100804
22.
El-Siblani
,
A.
, and
Shkolnik
,
A.
,
2013
, “
Apparatus and Method for Forming Three-Dimensional Objects Using Linear Solidification
,” U.S. Patent No. 20,130,001,834.
23.
Kirschman
,
C.
, and
Jara-Almonte
,
C.
,
1992
, “
A Parallel Slicing Algorithm for Solid Freeform Fabrication Processes
,”
Solid Freeform Fabrication Proceedings
, Austin, TX, pp.
26
33
.
24.
Cao
,
W.
, and
Miyamoto
,
Y.
,
2003
, “
Direct Slicing from AutoCAD Solid Models for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
21
(
10–11
), pp.
739
742
.10.1007/s00170-002-1316-0
25.
Starly
,
B.
,
Lau
,
A.
,
Sun
,
W.
,
Lau
,
W.
, and
Bradbury
,
T.
,
2005
, “
Direct Slicing of STEP Based NURBS Models for Layered Manufacturing
,”
Comput.-Aided Des.
,
37
(
4
), pp.
387
397
.10.1016/j.cad.2004.06.014
26.
Sun
,
S.
,
Chiang
,
H.
, and
Lee
,
M.
,
2007
, “
Adaptive Direct Slicing of a Commercial CAD Model for Use in Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
34
(
7–8
), pp.
689
701
.10.1007/s00170-006-0651-y
27.
Chakraborty
,
D.
, and
Choudhury
,
A. R.
,
2007
, “
A Semi-Analytic Approach for Direct Slicing of Free Form Surfaces for Layered Manufacturing
,”
Rapid Prototyping J.
,
13
(
4
), pp.
256
264
.10.1108/13552540710776205
28.
Tata
,
K.
,
Fadel
,
G.
,
Bagchi
,
A.
, and
Aziz
,
N.
,
1998
, “
Efficient Slicing for Layered Manufacturing
,”
Rapid Prototyping J.
,
4
(
4
), pp.
151
167
.10.1108/13552549810239003
29.
Rock
,
S. J.
, and
Wozny
,
M. J.
,
1991
, “
Utilizing Topological Information to Increase Scan Vector Generation Efficiency
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Citeseer, The University of Texas, Austin, TX, pp.
28
36
.
30.
Rock
,
S. J.
, and
Wozny
,
M. J.
,
1992
, “
Generating Topological Information From a Bucket of Facets
,”
Proceedings of Solid Freeform Fabrication Symposium
, Citeseer, The University of Texas, Austin, TX, pp.
251
259
.
31.
Huang
,
X.
,
Ye
,
C.
,
Wu
,
S.
,
Guo
,
K.
, and
Mo
,
J.
,
2009
, “
Sloping Wall Structure Support Generation for Fused Deposition Modeling
,”
Int. J. Adv. Manuf. Technol.
,
42
(
11–12
), pp.
1074
1081
.10.1007/s00170-008-1675-2
32.
Gupta
,
V.
,
Bajpai
,
V.
, and
Tandon
,
P.
,
2014
, “
Slice Generation and Data Retrieval Algorithm for Rapid Manufacturing of Heterogeneous Objects
,”
Comput.-Aided Des. Appl.
,
11
(
3
), pp.
255
262
10.1080/16864360.2014.863483.
33.
Kirschman
,
C.
,
Jara-Almonte
,
C.
,
Bagchi
,
A.
,
Dooley
,
R.
, and
Ogale
,
A.
,
1991
, “
Computer Aided Design of Support Structures for Stereolithographic Components
,”
Proceedings of the 1991 ASME Computers in Engineering Conference
,
Santa Clara, CA
, pp.
443
448
.
34.
Hur
,
J.
, and
Lee
,
K.
,
1996
, “
Efficient Algorithm for Automatic Support Structure Generation in Layered Manufacturing
,”
Proceedings ASME Computers in Engineering Conference
, Wiley, Aug., pp. 18–22.
35.
Software for Additive Manufacturing
,” http://software.materialise.com/
36.
Chalasani
,
K.
,
Jones
,
L.
, and
Roscoe
,
L.
,
1995
, “
Support Generation for Fused Deposition Modeling
,”
Proceedings of Solid Freeform Fabrication Symposium
, University of Texas, Austin, TX, Aug., pp.
229
241
.
37.
Chen
,
Y.
,
Li
,
K.
, and
Qian
,
X.
,
2013
, “
Direct Geometry Processing for Telefabrication
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
4
), p.
041002
.10.1115/1.4024912
38.
Bo
,
Q.
,
Lichao
,
Z.
,
Yusheng
,
S.
, and
Guocheng
,
L.
,
2012
, “
Support Fast Generation Algorithm Based on Discrete-Marking in Stereolithgraphy Rapid Prototyping
,”
Rapid Prototyp. J.
,
17
(
6
), pp.
451
457
10.1108/13552541111184189.
You do not currently have access to this content.