Friction stir welding (FSW) was applied in the current study in order to butt weld AZ31B-H24 alloy plates. Creep tests were conducted both on the parent material and on the friction stir welded specimens. The microstructure of the AZ31B alloy was found to be unstable under creep conditions. In the case of friction stir welded AZ31B, the material undergoes during FSW both recrystallization and grain growth, then the exposure to temperature during creep yields an extensive additional grain growth. On the other hand, twinning and twin-induced recrystallization occur as well during creep so that ultrafine grains are being created concurrently.
Issue Section:
Joining
References
1.
Deng
, J.
, Lin
, Y. C.
, Li
, S. S.
, Chen
, J.
, and Ding
, Y.
, 2013
, “Hot Tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy
,” Mater. Des.
, 49
, pp. 209
–219
.10.1016/j.matdes.2013.01.0232.
Tian
, S.
, Wang
, L.
, Sohn
, K. Y.
, Kim
, K. H.
, Xu
, Y.
, and Hu
, Z.
, 2006
, “Microstructure Evolution and Deformation Features of AZ31 Mg-Alloy During Creep
,” Mater. Sci. Eng. A
, 415
(1–2
), pp. 309
–316
.10.1016/j.msea.2005.10.0153.
Tan
, J. C.
, and Tan
, M. J.
, 2003
, “Superplasticity and Grain Boundary Sliding Characteristics in Two Stage Deformation of Mg–3Al–1Zn Alloy Sheet
,” Mater. Sci. Eng. A
, 339
(1–2
), pp. 81
–89
.10.1016/S0921-5093(02)00097-74.
Yuan
, W.
, Mishra
, R. S.
, Carlson
, B.
, Verma
, R.
, and Mishra
, R. K.
, 2012
, “Material Flow and Microstructural Evolution During Friction Stir Spot Welding of AZ31 Magnesium Alloy
,” Mater. Sci. Eng. A
, 543
, pp. 200
–209
.10.1016/j.msea.2012.02.0755.
Pareek
, M.
, Polar
, A.
, Rumiche
, F.
, and Indacochea
, J. E.
, 2007
, “Metallurgical Evaluation of AZ31B-H24 Magnesium Alloy Friction Stir Welds
,” J. Mater. Eng. Perform.
, 16
(5
), pp. 655
–662
.10.1007/s11665-007-9084-56.
Darras
, B. M.
, Khraisheh
, M. K.
, Abu-Farha
, F. K.
, and Omar
, M. A.
, 2007
, “Friction Stir Processing of Commercial AZ31 Magnesium Alloy
,” J. Mater. Process. Technol.
, 191
(1–3
), pp. 77
–81
.10.1016/j.jmatprotec.2007.03.0457.
Chang
, C. I.
, Lee
, C. J.
, and Huang
, J. C.
, 2004
, “Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloy
,” Scr. Mater.
, 51
(6
), pp. 509
–514
.10.1016/j.scriptamat.2004.05.0438.
Fukumoto
, S.
, Yamamoto
, D.
, Tomita
, T.
, Okita
, K.
, Tsubakino
, H.
, and Yamamoto
, A.
, 2007
, “Effect of Post Weld Heat Treatment on Microstructure and Mechanical Properties of AZ31B Friction Welded Joint
,” Mater. Trans.
, 48
(1
), pp. 44
–52
.10.2320/matertrans.48.449.
Suhuddin
, U. F. H. R.
, Mironov
, S.
, Sato
, Y. S.
, Kokawa
, H.
, and Lee
, C. W.
, 2009
, “Grain Structure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy
,” Acta Mater.
, 57
(18
), pp. 5406
–5418
.10.1016/j.actamat.2009.07.04110.
Fukumoto
, S.
, Tanaka
, S.
, Ono
, T.
, Tsubakino
, H.
, Tomita
, T.
, Aritoshi
, M.
, and Okita
, K.
, 2006
, “Microstructure Development in Friction Welded AZ31 Magnesium Alloy
,” Mater. Trans.
, 47
(4
), pp. 1071
–1076
.10.2320/matertrans.47.107111.
Regev
, M.
, and Spigarelli
, S.
, 2013
, “Plastic Deformation Mechanisms of Base Material and Friction Stir Welded AZ31B-H24 Magnesium Alloy
,” Mater. Sci. Appl.
, 4
(6
), pp. 357
–364
.10.4236/msa.2013.4604612.
Regev
, M.
, and Spigarelli
, S.
, 2013
, “Plastic Deformation Mechanisms Operating in Parent Metal and Friction Stir Welded AZ31B Magnesium Alloy
,” 7th Asia Pacific IIW International Conference
, Research Publishing, Singapore, pp. 523
–527
.13.
Fehrenbacher
, A.
, Schmale
, J. R.
, Zinn
, M. R.
, and Pfefferkorn
, F. E.
, 2014
, “Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding
,” ASME J. Manuf. Sci. Eng.
, 136
(2
), p. 021009
.10.1115/1.402611514.
Fehrenbacher
, A.
, Smith
, C. B.
, Duffie
, N. A.
, Ferrier
, N. J.
, Pfefferkorn
, F. E.
, and Zinn
, M. R.
, 2014
, “Combined Temperature and Force Control for Robotic Friction Stir Welding
,” ASME J. Manuf. Sci. Eng.
, 136
(2
), p. 021007
.10.1115/1.402591215.
Galiyev
, A.
, Kaibyshev
, R.
, and Gottstein
, G.
, 2001
, “Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60
,” Acta Mater.
, 49
(7
), pp. 1199
–1207
.10.1016/S1359-6454(01)00020-916.
Sitdikov
, O.
, Kaibyshev
, R.
, and Sakai
, T.
, 2003
, “Dynamic Recrystallization Based on Twinning in Coarse-Grained Mg
,” Mater. Sci. Forum
, 419–422
, pp. 521
–526
.10.4028/www.scientific.net/MSF.419-422.52117.
Spigarelli
, S.
, Ruano
, O. A.
, Mehtedi
, M. El.
, and del Valle
, J. A.
, 2013
, “High Temperature Deformation and Microstructural Instability in AZ31 Magnesium Alloy
,” Mater. Sci. Eng. A
, 570
, pp. 135
–148
.10.1016/j.msea.2013.01.06018.
Spigarelli
, S.
, Regev
, M.
, Mehtedi
, M. El.
, Quercetti
, G.
, and Cabibbo
, M.
, 2011
, “Analysis of the Effect of Friction Stir Welding on the Minimum Creep Rate of a Mg–3%Al–1%Zn Alloy
,” Scr. Mater.
, 65
(7
), pp. 626
–629
.10.1016/j.scriptamat.2011.06.042Copyright © 2015 by ASME
You do not currently have access to this content.