Abstract

As a newly invented parallel kinematic machine (PKM), Exechon has attracted intensive attention from both academic and industrial fields due to its conceptual high performance. Nevertheless, the dynamic behaviors of Exechon PKM have not been thoroughly investigated because of its structural and kinematic complexities. To identify the dynamic characteristics of Exechon PKM, an elastodynamic model is proposed with the substructure synthesis technique in this paper. The Exechon PKM is divided into a moving platform subsystem, a fixed base subsystem and three limb subsystems according to its structural features. Differential equations of motion for the limb subsystem are derived through finite element (FE) formulations by modeling the complex limb structure as a spatial beam with corresponding geometric cross sections. Meanwhile, revolute, universal, and spherical joints are simplified into virtual lumped springs associated with equivalent stiffnesses and mass at their geometric centers. Differential equations of motion for the moving platform are derived with Newton's second law after treating the platform as a rigid body due to its comparatively high rigidity. After introducing the deformation compatibility conditions between the platform and the limbs, governing differential equations of motion for Exechon PKM are derived. The solution to characteristic equations leads to natural frequencies and corresponding modal shapes of the PKM at any typical configuration. In order to predict the dynamic behaviors in a quick manner, an algorithm is proposed to numerically compute the distributions of natural frequencies throughout the workspace. Simulation results reveal that the lower natural frequencies are strongly position-dependent and distributed axial-symmetrically due to the structure symmetry of the limbs. At the last stage, a parametric analysis is carried out to identify the effects of structural, dimensional, and stiffness parameters on the system's dynamic characteristics with the purpose of providing useful information for optimal design and performance improvement of the Exechon PKM. The elastodynamic modeling methodology and dynamic analysis procedure can be well extended to other overconstrained PKMs with minor modifications.

References

1.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2007
, “
Kinematic Analysis of a 3-PRS Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
23
(
4
), pp.
395
408
.10.1016/j.rcim.2006.04.007
2.
Hennes
,
N.
, and
Staimer
,
D.
,
2004
, “
Application of PKM in Aerospace Manufacturing-High Performance Machining Centers ECOSPEED, ECOSPEED-F and ECOLINER
,”
4th Chemnitz Parallel Kinematics Seminar
, pp.
557
568
.
3.
Tricept PKM
,
2009
, http://www.pkmtricept.com/
4.
Neumann
,
K. E.
,
2002
, “
Tricept Application
,” 3rd Chemnitz Parallel Kinematics Seminar, Zwickau, Germany, pp.
547
551
.
5.
Caccavale
,
F.
,
Siciliano
,
B.
, and
Villani
,
L.
,
2003
, “
The Tricept Robot: Dynamics and Impedance Control
,”
IEEE/ASME Trans. Mechatronics
,
8
(
2
), pp.
263
268
.10.1109/TMECH.2003.812839
6.
Fernandez
,
A. J. S.
,
Jimenez
,
V. C.
, and
Olazabal
,
M. G.
,
2002
, “
Kinematical System for a Movable Platform of a Machine
,” European Patent No. EP1245349A1.
7.
Ray
,
P.
,
2005
, “
Design of New High Speed Machining Machines
,”
Product Engineering
,
Springer
, Amsterdam,
Netherlands
, pp.
379
396
.
8.
Chen
,
J. S.
, and
Hsu
,
W. Y.
,
2004
, “
Design and Analysis of a Tripod Machine Tool With an Integrated Cartesian Guiding and Metrology Mechanism
,”
Precis. Eng.
,
28
(
1
), pp.
46
57
.10.1016/S0141-6359(03)00073-4
9.
Terrier
,
M.
,
Giménez
,
M.
, and
Hascoët
,
J. Y.
,
2005
, “
VERNE-A Five-Axis Parallel Kinematics Milling Machine
,”
Proc. Inst. Mech. Eng., Part B
,
219
(
3
), pp.
327
336
.10.1243/095440505X30177
10.
Azulay
,
H.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
A Multi-Tier Design Methodology for Reconfigurable Milling Machines
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041007
.10.1115/1.4027315
11.
Neumann
,
K.
,
2008
, “
Adaptive In-Jig High Load Exechon Machining & Assembly Technology
,” SAE Paper No. 08AMT-0044.
12.
Neumann
,
K. E.
,
2006
, “
Exechon Concept
,”
Parallel Kinematic Machines in Research and Practice
, Vol.
33
, Chemnitz, Germany, pp.
787
802
.
14.
Kang
,
R. J.
,
Chanal
,
H.
,
Bonnemains
,
T.
,
Pateloup
,
S.
,
Branson
,
D. T.
, and
Ray
,
P.
,
2012
, “
Learning the Forward Kinematics Behavior of a Hybrid Robot Employing Artificial Neural Networks
,”
Robotica
,
30
(
5
), pp.
847
855
.10.1017/S026357471100107X
15.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2010
, “
Kinematics Analysis of the Exechon Tripod
,”
ASME
Paper No. DETC2010-28668. 10.1115/DETC2010-28668
16.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Rob. Comput.-Integr. Manuf.
,
27
(
1
), pp.
186
193
.10.1016/j.rcim.2010.07.006
17.
Jin
,
Y.
,
Bi
,
Z. M.
,
Liu
,
H. T.
,
Higgins
,
C.
,
Price
,
M.
,
Chen
,
W. H.
, and
Huang
,
T.
,
2015
, “
Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041004
.10.1115/1.4029499
18.
Zlatanov
,
D.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2012
, “
Constraint and Singularity Analysis of the Exechon Tripod
,”
ASME
Paper No. DETC2012-71184.10.1115/DETC2012-71184
19.
Amine
,
S.
,
Caro
,
S.
, and
Wenger
,
P.
,
2012
, “
Constraint and Singularity Analysis of the Exechon
,”
Appl. Mech. Mater.
,
162
, pp.
141
150
.10.4028/www.scientific.net/AMM.162.141
20.
Li
,
X.
,
Zlatanov
,
D.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2010
, “
Stiffness Estimation and Experiments for the Exechon Parallel Self-Reconfiguring Fixture Mechanism
,”
ASME
Paper No. DETC2012-70993. 10.1115/DETC2012-70993
21.
Bi
,
Z. M.
,
2014
, “
Kinetostatic Modeling of Exechon Parallel Kinematic Machine for Stiffness Analysis
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
325
335
.10.1007/s00170-013-5482-z
22.
Sheng
,
D. Y.
,
Qing
,
N.
,
Zhang
,
L. S.
,
Yu
,
H. D.
, and
Wang
,
H.
,
2012
, “
Static Stiffness Analysis of Exechon Parallel Manipulator Based on Screw Theory
,”
The 6th Asian Conference on Multibody Dynamics
,
Shanghai, China
, Paper No. ID229000.
23.
Shang
,
M. D.
, and
Butterfield
,
J.
,
2011
, “
The Experimental Test and FEA of a PKM (Exechon) in a Flexible Fixture Application for Aircraft Wing Assembly
,”
IEEE 2011 International Conference on Mechatronics and Automation (ICMA)
,
Beijing, China
, Aug. 7–10, pp.
1225
1230
.
24.
Bi
,
Z. M.
, and
Kang
,
B. S.
,
2014
, “
An Inverse Dynamic Model of Over-Constrained Parallel Kinematic Machine Based on Newton-Euler Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
4
), p.
041001
.10.1115/1.4026533
25.
Bonnemains
,
T.
,
Chanal
,
H.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2013
, “
Dynamic Model of an Overconstrained PKM With Compliances: The Tripteor X7
,”
Rob. Comput.-Integr. Manuf.
,
29
(
1
), pp.
180
191
.10.1016/j.rcim.2012.05.003
26.
Bonnemains
,
T.
,
Chanal
,
H.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2009
, “
Stiffness Computation and Identification of Parallel Kinematic Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041013
.10.1115/1.3160328
27.
Ding
,
Y.
,
Zhu
,
L. M.
,
Zhang
,
X. J.
, and
Ding
,
H.
,
2013
, “
Stability Analysis of Milling Via the Differential Quadrature Method
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
044502
.10.1115/1.4024539
28.
Law
,
M.
,
Phani
,
A.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
.10.1115/1.4023453
29.
dos Santos
,
R. G.
, and
Coelho
,
R. T.
,
2014
, “
A Contribution to Improve the Accuracy of Chatter Prediction in Machine Tools Using the Stability Lobe Diagram
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021005
.10.1115/1.4025514
30.
Piras
,
G.
,
Cleghorn
,
W. L.
, and
Mills
,
J. K.
,
2005
, “
Dynamic Finite-Element Analysis of a Planar High-Speed, High-Precision Parallel Manipulator With Flexible Links
,”
Mech. Mach. Theory
,
40
(
7
), pp.
849
862
.10.1016/j.mechmachtheory.2004.12.007
31.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2009
, “
Dynamic Modeling and Robust Control of a 3-PRC Translational Parallel Kinematic Machine
,”
Rob. Comput.-Integr. Manuf.
,
25
(
3
), pp.
630
640
.10.1016/j.rcim.2008.05.006
32.
Li
,
Y. G.
,
Song
,
Y. M.
,
Feng
,
Z. Y.
, and
Zhang
,
C.
,
2007
, “
Inverse Dynamics of 3-PRS Parallel Mechanism by Newton-Euler Formulation
,”
Acta Aeronaut. Astronaut. Sin.
,
28
(
5
), pp.
1210
1215
. (in Chinese).10.3321/j.issn:1000-6893.2007.05.030
33.
Xi
,
F. F.
,
Angelico
,
O.
, and
Sinatra
,
R.
,
2005
, “
Tripod Dynamics and Its Inertia Effect
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
144
149
.10.1115/1.1814652
34.
Zhang
,
J.
,
Dai
,
J. S.
, and
Huang
,
T.
,
2015
, “
Character Equation-Based Dynamic Analysis of a Three-Revolute Prismatic Spherical Parallel Kinematic Machine
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021017
.10.1115/1.4028416
35.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Jin
,
Y.
,
2015
, “
Kinetostatic-Model-Based Stiffness Analysis of Exechon PKM
,”
Rob. Comput.-Integr. Manuf.
(in press).
36.
David
,
H.
,
2004
,
Fundamentals of Finite Element Analysis
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.