Granular packing structures of cohesive microsized particles with different sizes and size distributions, including monosized, uniform, and Gaussian distribution, are investigated by using two different history dependent contact models with discrete element method (DEM). The simulation is carried out in the framework of liggghts, which is a DEM simulation package extended based on branch of granular package of widely used open-source code LAMMPS. Contact force caused by translation and rotation, frictional and damping forces due to collision with other particles or container boundaries, cohesive force, van der Waals force, and gravity is considered. The radial distribution functions (RDFs), force distributions, porosities, and coordination numbers under cohesive and noncohesive conditions are reported. The results indicate that particle size and size distributions have great influences on the packing density for particle packing under cohesive effect: particles with Gaussian distribution have the lowest packing density, followed by the particles with uniform distribution; the particles with monosized distribution have the highest packing density. It is also found that cohesive effect to the system does not significantly affect the coordination number that mainly depends on the particle size and size distribution. Although the magnitude of net force distribution is different, the results for porosity, coordination number, and mean value of magnitude of net force do not vary significantly between the two contact models.

References

1.
Visscher
,
W. M.
, and
Bolsterli
,
M.
,
1972
, “
Random Packing of Equal and Unequal Spheres in Two and Three Dimensions
,”
Nature
,
239
, pp.
504
507
.
2.
Scott
,
G. D.
,
1960
, “
Packing of Spheres: Packing of Equal Spheres
,”
Nature
,
188
, pp.
908
909
.
3.
Tory
,
E. M.
,
Church
,
B. H.
,
Tam
,
M. K.
, and
Ratner
,
M.
,
1973
, “
Simulated Random Packing of Equal Spheres
,”
Can. J. Chem. Eng.
,
51
(
4
), pp.
484
493
.
4.
Stovall
,
T.
,
de Larrard
,
F.
, and
Buil
,
M.
,
1986
, “
Linear Packing Density Model of Grain Mixtures
,”
Powder Technol.
,
48
(
1
), pp.
1
12
.
5.
Jia
,
T.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2012
, “
Simulation of Granular Packing of Particles With Different Size Distributions
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
172
180
.
6.
Jia
,
T.
,
Zhang
,
Y.
,
Chen
,
J. K.
, and
He
,
Y. L.
,
2012
, “
Dynamic Simulation of Granular Packing of Fine Cohesive Particles With Different Size Distributions
,”
Powder Technol.
,
218
, pp.
76
85
.
7.
Yu
,
A. B.
, and
Standish
,
N.
,
1993
, “
A Study of the Packing of Particles With a Mixture Size Distribution
,”
Powder Technol.
,
76
(
2
), pp.
113
124
.
8.
Dou
,
X.
,
Mao
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Effects of Contact Force Model and Size Distribution on Microsized Granular Packing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021003
.
9.
Wiącek
,
J.
, and
Molenda
,
M.
,
2014
, “
Effect of Particle Size Distribution on Micro- and Macromechanical Response of Granular Packings Under Compression
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4189
4195
.
10.
Sáez
,
A. E.
,
Yépez
,
M. M.
,
Cabrera
,
C.
, and
Soria
,
E. M.
,
1991
, “
Static Liquid Holdup in Packed Beds of Spherical Particles
,”
AIChE J.
,
37
(
11
), pp.
1733
1736
.
11.
Vieira
,
P. A.
, and
Lacks
,
D. J.
,
2003
, “
Particle Packing in Soft- and Hard-Potential Liquids
,”
J. Chem. Phys.
,
119
(
18
), pp.
9667
9672
.
12.
Tu
,
Y.
,
Xu
,
Z.
, and
Wang
,
W.
,
2015
, “
Method for Evaluating Packing Condition of Particles in Coal Water Slurry
,”
Powder Technol.
,
281
, pp.
121
128
.
13.
Yang
,
R. Y.
,
Zou
,
R. P.
,
Dong
,
K. J.
,
An
,
X. Z.
, and
Yu
,
A.
,
2007
, “
Simulation of the Packing of Cohesive Particles
,”
Comput. Phys. Commun.
,
177
(
1–2
), pp.
206
209
.
14.
Jia
,
T.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2011
, “
Dynamic Simulation of Particle Packing With Different Size Distributions
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021011
.
15.
Landry
,
J. W.
,
Grest
,
G. S.
, and
Plimpton
,
S. J.
,
2004
, “
Discrete Element Simulations of Stress Distributions in Silos: Crossover From Two to Three Dimensions
,”
Powder Technol.
,
139
(
3
), pp.
233
239
.
16.
Sykut
,
J.
,
Molenda
,
M.
, and
Horabik
,
J.
,
2008
, “
DEM Simulation of the Packing Structure and Wall Load in a 2-Dimensional Silo
,”
Granular Matter
,
10
(
4
), pp.
273
278
.
17.
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2000
, “
Computer Simulation of the Packing of Fine Particles
,”
Phys. Rev. E
,
62
(
3
), pp.
3900
3908
.
18.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dyn., Int. J.
,
12
(
2
), pp.
140
152
.
19.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
20.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J.-M.
, and
Pöschel
,
T.
,
1996
, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
,
53
(
5
), pp.
5382
5392
.
21.
Silbert
,
L. E.
,
Ertaş
,
D.
,
Grest
,
G. S.
,
Halsey
,
T. C.
,
Levine
,
D.
, and
Plimpton
,
S. J.
,
2001
, “
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
,
64
(
5
), p.
051302
.
22.
Zhang
,
H. P.
, and
Makse
,
H. A.
,
2005
, “
Jamming Transition in Emulsions and Granular Materials
,”
Phys. Rev. E
,
72
(
1
), p.
011301
.
23.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dyn., Int. J.
,
12
(
2
), pp.
140
152
.
24.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London Ser. A
,
324
(
1558
), pp.
301
313
.
25.
Kern
,
W. F.
, and
Bland
,
J. R.
,
1938
,
Solid Mensuration: With Proofs
, 2nd ed.,
Wiley
,
New York
.
26.
Hamaker
,
H. C.
,
1937
, “
The London—Van Der Waals Attraction Between Spherical Particles
,”
Physica
,
4
(
10
), pp.
1058
1072
.
27.
Götzinger
,
M.
, and
Peukert
,
W.
,
2003
, “
Dispersive Forces of Particle–Surface Interactions: Direct AFM Measurements and Modelling
,”
Powder Technol.
,
130
(
1–3
), pp.
102
109
.
28.
Zhou
,
Y. C.
,
Wright
,
B. D.
,
Yang
,
R. Y.
,
Xu
,
B. H.
, and
Yu
,
A. B.
,
1999
, “
Rolling Friction in the Dynamic Simulation of Sandpile Formation
,”
Phys. A-Stat. Mech. Appl.
,
269
(
2
), pp.
536
553
.
29.
Huang
,
Y. J.
,
Nydal
,
O. J.
, and
Yao
,
B.
,
2014
, “
Time Step Criterions for Nonlinear Dense Packed Granular Materials in Time-Driven Method Simulations
,”
Powder Technol.
,
253
, pp.
80
88
.
30.
Deng
,
X. L.
, and
Davé
,
R .N.
,
2013
, “
Dynamic Simulation of Particle Packing Influenced by Size, Aspect Ratios and Surface Energy
,”
Granular Matter
,
15
, pp.
401
415
.
31.
An
,
X.
, and
Li
,
C.
,
2013
, “
Experiments on Densifying Packing of Equal Spheres by Two-Dimensional Vibration
,”
Particuology
,
11
(
6
), pp.
689
694
.
32.
Di Renzo
,
A.
, and
Di Maio
,
F. P.
,
2004
, “
Comparison of Contact-Force Models for the Simulation of Collisions in Dem-Based Granular Flow Codes
,”
Chem. Eng. Sci.
,
59
(
3
), pp.
525
541
.
You do not currently have access to this content.