This paper presents the following procedure of additive manufacturing technology: point → track → surface → part, each part including different research aspects of selective laser melting (SLM) process. First, the transmissivity of laser through powder layer is measured with various powder layer thicknesses and particle sizes. The evolution of track cross section dimension is studied with different laser parameters and powders in track research. A surface quality including morphology and roughness research is shown in surface section. In this part, a single melted layer with smooth surface Ra 12.5 μm can be obtained with high laser density. After the part was established, the density and microstructure of SLM Fe part are present. The microstructural features of SLM Fe experienced an interesting change as follows: secondary sorbite → martensite → pearlite with decrease in laser energy density. At last, a simple SLM-process model was described.

References

1.
Kruth
,
J.-P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
730
759
.
2.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
3.
Fox
,
P.
,
Pogson
,
S.
,
Sutcliffe
,
C. J.
, and
Jones
,
E.
,
2008
, “
Interface Interactions Between Porous Titanium/Tantalum Coatings, Produced by Selective Laser Melting (SLM), on a Cobalt–Chromium Alloy Original
,”
Surf. Coat. Technol.
,
202
(
20
), pp.
5001
5007
.
4.
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Properties of Selective Laser Melting Mg–9%Al Powder Mixture
,”
Mat. Des.
,
34
, pp.
753
758
.
5.
Gu
,
D.
,
Chang
,
F.
, and
Dai
,
D.
,
2015
, “
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021010
.
6.
Gu
,
D.
,
Wang
,
H.
, and
Dai
,
D.
,
2015
, “
Laser Additive Manufacturing of Novel Aluminum Based Nanocomposites Parts: Tailored Forming of Multiple Materials
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021004
.
7.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
8.
Fischer
,
P.
,
Leber
,
H.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Andre
,
C.
, and
Glardon
,
R.
,
2004
, “
Microstructure of Near-Infrared Pulsed Laser Sintered Titanium Samples
,”
Appl. Phys. A: Mater. Sci. Process.
,
78
(
8
), pp.
1219
1227
.
9.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
616
622
.
10.
Gu
,
D.
, and
Shen
,
Y.
,
2007
, “
Balling Phenomena During Direct Laser Sintering of Multi-Component Cu-Based Metal Powder
,”
J. Alloy Compd.
,
432
(
1–2
), pp.
163
166
.
11.
Osakada
,
K.
, and
Shiomi
,
M.
,
2006
, “
Flexible Manufacturing of Metallic Products by Selective Laser Melting of Powder
,”
Int. J. Mach. Tool Manuf.
,
46
(
11
), pp.
1188
1193
.
12.
Li
,
R.
,
Shi
,
Y.
, and
Wang
,
Z.
,
2010
, “
Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4350
4356
.
13.
Zhang
,
B.
,
Fenineche
,
N.
,
Zhu
,
L.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Studies of Magnetic Properties of Permalloy (Fe–30%Ni) Prepared by SLM Technology
,”
J. Magn. Magn. Mater.
,
324
(
4
), pp.
495
500
.
14.
Das
,
S.
,
2001
, “
On Some Physical Aspects of Process Control in Direct Selective Laser Sintering of Metals-Parts I, II, III
,”
Solid Freeform Fabrication Proceedings
,
University of Texas at Austin
,
Austin, TX
, pp.
85
109
.
15.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061012
.
16.
Zhang
,
B.
,
Dembinski
,
L.
, and
Coddet
,
C.
,
2013
, “
The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder
,”
Mater. Sci. Eng., A
,
584
, pp.
21
31
.
17.
Tolochko
,
N. K.
,
Mozzharov
,
S. E.
,
Yadroitsev
,
I. A.
, and
Laoui
,
T.
,
2004
, “
Mechanisms of Selective Laser Sintering and Heat Transfer in Ti Powder
,”
Rapid Prototyping J.
,
10
(
2
), pp.
78
87
.
18.
Yadroitsev
,
I.
,
Thivillon
,
L.
,
Bertrand
,
Ph.
, and
Smurov
,
I.
,
2007
, “
Strategy of Manufacturing Components With Designed Internal Structure by SEL Laser Melting of Metallic Powder
,”
Appl. Surf. Sci.
,
254
(
4
), pp.
980
983
.
19.
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2013
, “
Microstructure Evolution and Density Behavior of CP Ti Parts Elaborated by Self-Developed Vacuum Selective Laser Melting System
,”
Appl. Surf. Sci.
,
279
, pp.
310
316
.
20.
Gusarov
,
A. V.
, and
Smurov
,
I.
,
2009
, “
Two-Dimensional Numerical Modelling of Radiation Transfer in Powder Beds at Selective Laser Melting
,”
Appl. Surf. Sci.
,
255
(
10
), pp.
5595
5599
.
21.
Eustathopoulos
,
N.
,
Nicholas
,
M. G.
, and
Drevet
,
B.
,
1999
,
Wettability at High Temperatures
,
Pergamon Press
,
Oxford, UK
.
You do not currently have access to this content.