Process planning can be an effective way to improve the energy efficiency of production processes. Aimed at reducing both energy consumption and processing time (PT), a comprehensive approach that considers feature sequencing, process selection, and physical resources allocation simultaneously is established in this paper. As the number of decision variables increase, process planning becomes a large-scale problem, and it is difficult to be addressed by simply employing a regular meta-heuristic algorithm. A cooperative co-evolutionary algorithm, which hybridizes the artificial bee colony algorithm (ABCA) and Tabu search (TS), is therefore proposed. In addition, in the proposed algorithm, a novel representation method is designed to generate feasible process plans under complex precedence. Compared with some widely used algorithms, the proposed algorithm is proven to have a good performance for handling large-scale process planning in terms of maximizing energy efficiency and production times.

References

1.
Dai
,
M.
,
Tang
,
D.
,
Xu
,
Y.
, and
Li
,
W.
,
2015
, “
Energy-Aware Integrated Process Planning and Scheduling for Job Shops
,”
Proc. Inst. Mech. Eng., Part B
,
229
(
1-Suppl
), pp.
13
26
.
2.
Doh
,
H.-H.
,
Yu
,
J.-M.
,
Kim
,
J.-S.
,
Lee
,
D.-H.
, and
Nam
,
S.-H.
,
2013
, “
A Priority Scheduling Approach for Flexible Job Shops With Multiple Process Plans
,”
Int. J. Prod. Res.
,
51
(
12
), pp.
3748
3764
.
3.
Alting
,
L.
, and
Zhang
,
H.
,
1989
, “
Computer Aided Process Planning: The State-of-the-Art Survey
,”
Int. J. Prod. Res.
,
27
(
4
), pp.
553
585
.
4.
Yusof
,
Y.
, and
Latif
,
K.
,
2014
, “
Survey on Computer-Aided Process Planning
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1
), pp.
1
13
.
5.
Sadaiah
,
M.
,
Yadav
,
D. R.
,
Mohanram
,
P. V.
, and
Radhakrishnan
,
P.
,
2002
, “
A Generative Computer-Aided Process Planning System for Prismatic Components
,”
Int. J. Adv. Manuf. Technol.
,
20
(
10
), pp.
709
719
.
6.
Ren
,
L.
,
Sparks
,
T.
,
Ruan
,
J.
, and
Liou
,
F.
,
2010
, “
Integrated Process Planning for a Multiaxis Hybrid Manufacturing System
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021006
.
7.
Chen
,
H.
,
Xi
,
N.
,
Sheng
,
W.
, and
Chen
,
Y.
,
2005
, “
General Framework of Optimal Tool Trajectory Planning for Free-Form Surfaces in Surface Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
49
59
.
8.
Zhou
,
C.
,
2014
, “
A Direct Tool Path Planning Algorithm for Line Scanning Based Stereolithography
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061023
.
9.
Wang
,
Z.
,
Tan
,
C.
, and
Dong
,
X.
,
2009
, “
Conflict Resolution Based on CBR in Intelligent CAPP System
,”
International Conference on Intelligent Human-Machine Systems and Cybernetics
(
IHMSC
), Hangzhou, Zhejiang, China, Aug. 26–27, pp.
133
136
.
10.
Yang
,
Z.
,
Wysk
,
R. A.
, and
Joshi
,
S.
,
2012
, “
Setup Planning Automation for Six-Axis Wire Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021009
.
11.
Li
,
Y.
, and
Frank
,
M. C.
,
2012
, “
Computing Axes of Rotation for Setup Planning Using Visibility of Polyhedral Computer-Aided Design Models
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041005
.
12.
Wang
,
J.
, and
Meng
,
Q.
,
2008
, “
Knowledge Representation for Knowledge-Based Generative CAPP
,”
IEEE International Symposium on Knowledge Acquisition and Modeling Workshop
(
KAM
), Wuhan, China, Dec. 21–22, pp.
1010
1013
.
13.
Kim
,
Y. K.
,
Park
,
K.
, and
Ko
,
J.
,
2003
, “
A Symbiotic Evolutionary Algorithm for the Integration of Process Planning and Job Shop Scheduling
,”
Comput. Oper. Res.
,
30
(02), pp.
1151
1171
.
14.
Musharavati
,
F.
, and
Hamouda
,
A. S. M.
,
2012
, “
Enhanced Simulated-Annealing-Based Algorithms and Their Applications to Process Planning in Reconfigurable Manufacturing Systems
,”
Adv. Eng. Software
,
45
(
1
), pp.
80
90
.
15.
Shabaka
,
A. I.
, and
ElMaraghy
,
H. A.
,
2008
, “
A Model for Generating Optimal Process Plans in RMS
,”
Int. J. Comput. Integr. Manuf.
,
21
(
2
), pp.
180
194
.
16.
Bensmaine
,
A.
,
Dahane
,
M.
, and
Benyoucef
,
L.
,
2013
, “
A Non-Dominated Sorting Genetic Algorithm Based Approach for Optimal Machines Selection in Reconfigurable Manufacturing Environment
,”
Comput. Ind. Eng.
,
66
(
3
), pp.
519
524
.
17.
Chaube
,
A.
,
Benyoucef
,
L.
, and
Tiwari
,
M. K.
,
2012
, “
An Adapted NSGA-2 Algorithm Based Dynamic Process Plan Generation for a Reconfigurable Manufacturing System
,”
J. Intell. Manuf.
,
23
(
4
), pp.
1141
1155
.
18.
Manupati
,
V. K.
,
Thakkar
,
J. J.
,
Wong
,
K. Y.
, and
Tiwari
,
M. K.
,
2013
, “
Near Optimal Process Plan Selection for Multiple Jobs in Networked Based Manufacturing Using Multi-Objective Evolutionary Algorithms
,”
Comput. Ind. Eng.
,
66
(
1
), pp.
63
76
.
19.
Roohnavazfar
,
M.
,
Houshmand
,
M.
,
Nasiri-Zarandi
,
R.
, and
Mirsalim
,
M.
,
2014
, “
Using Axiomatic Design Theory for Selection of the Optimum Design Solution and Manufacturing Process Plans of a Limited Angle Torque Motor
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051009
.
20.
Haapala
,
K. R.
,
Catalina
,
A. V.
,
Johnson
,
M. L.
, and
Sutherland
,
J. W.
,
2012
, “
Development and Application of Models for Steelmaking and Casting Environmental Performance
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051013
.
21.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Zhang
,
H. C.
, and
Clarens
,
A. F.
,
2011
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME
Paper No. MSEC2011-50300.
22.
Karlsdottir
,
M. R.
,
Palsson
,
O. P.
, and
Palsson
,
H.
,
2008
, “
Energy Efficiency Consideration of Geothermal Based Power Production
,”
International Symposium on District Heating and Cooling
, Reykjavik, Iceland, Aug. 31–Sept. 2.
23.
Weinert
,
N.
,
Chiotellis
,
S.
, and
Seliger
,
G.
,
2011
, “
Methodology for Planning and Operating Energy-Efficient Production Systems
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
41
44
.
24.
Suh
,
S. H.
,
2015
, “
A Green Productivity Based Process Planning System for a Machining Process
,”
Int. J. Prod. Res.
,
53
(
17
), pp.
5085
5105
.
25.
Mei
,
Y.
,
Li
,
X.
, and
Yao
,
X.
,
2014
, “
Cooperative Coevolution With Route Distance Grouping for Large-Scale Capacitated Arc Routing Problems
,”
IEEE Trans. Evol. Comput.
,
18
(
3
), pp.
435
449
.
26.
Frans
,
V. D. B.
, and
Engelbrecht
,
A. P.
,
2004
, “
A Cooperative Approach to Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
225
239
.
27.
Mcgibney
,
A.
,
Klepal
,
M.
, and
Pesch
,
D.
,
2011
, “
Agent-Based Optimization for Large Scale WLAN Design
,”
IEEE Trans. Evol. Comput.
,
15
(
4
), pp.
470
486
.
28.
Omidvar
,
M. N.
,
Li
,
X.
,
Mei
,
Y.
, and
Yao
,
X.
,
2014
, “
Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization
,”
IEEE Trans. Evol. Comput.
,
18
(
3
), pp.
378
393
.
29.
Li
,
X.
, and
Yao
,
X.
,
2012
, “
Cooperatively Coevolving Particle Swarms for Large Scale Optimization
,”
IEEE Trans. Evol. Comput.
,
16
(
2
), pp.
210
224
.
30.
Wang
,
L.
,
Cai
,
N.
,
Feng
,
H.-Y.
, and
Liu
,
Z.
,
2006
, “
Enriched Machining Feature-Based Reasoning for Generic Machining Process Sequencing
,”
Int. J. Prod. Res.
,
44
(
8
), pp.
1479
1501
.
31.
Nonaka
,
Y.
,
Erdős
,
G.
,
Kis
,
T.
,
Nakano
,
T.
, and
Váncza
,
J.
,
2012
, “
Scheduling With Alternative Routings in CNC Workshops
,”
CIRP Ann.-Manuf. Technol.
,
61
(
1
), pp.
449
454
.
32.
Fazli
,
A.
,
Arezoo
,
B.
, and
Hasanniya
,
M. H.
,
2014
, “
An Automated Process Sequence Design and Finite Element Simulation of Axisymmetric Deep Drawn Components
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031005
.
33.
Azab
,
A.
, and
Elmaraghy
,
H. A.
,
2007
, “
Mathematical Modeling for Reconfigurable Process Planning
,”
CIRP Ann.-Manuf. Technol.
,
56
(
1
), pp.
467
472
.
34.
Wang
,
L.
,
Holm
,
M.
, and
Adamson
,
G.
,
2010
, “
Embedding a Process Plan in Function Blocks for Adaptive Machining
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
433
436
.
35.
Nonaka
,
Y.
,
Erdős
,
G.
,
Kis
,
T.
,
Kovács
,
A.
,
Monostori
,
L.
,
Nakano
,
T.
, and
Váncza
,
J.
,
2013
, “
Generating Alternative Process Plans for Complex Parts
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
453
458
.
36.
Tapoglou
,
N.
,
Mehnen
,
J.
,
Vlachou
,
A.
,
Doukas
,
M.
,
Milas
,
N.
, and
Mourtzis
,
D.
,
2015
, “
Cloud-Based Platform for Optimal Machining Parameter Selection Based on Function Blocks and Real-Time Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040909
.
37.
Cai
,
X.
,
Li
,
W.
,
He
,
F.
, and
Li
,
X.
,
2015
, “
Customized Encryption of Computer Aided Design Models for Collaboration in Cloud Manufacturing Environment
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040905
.
38.
Tao
,
F.
,
Laili
,
Y.
,
Xu
,
L.
, and
Zhang
,
L.
,
2013
, “
FC-PACO-RM: A Parallel Method for Service Composition Optimal-Selection in Cloud Manufacturing System
,”
IEEE Trans. Ind. Inf.
,
9
(
4
), pp.
2023
2033
.
39.
Karaboga
,
D.
,
2005
, “
An Idea Based on Honey Bee Swarm for Numerical Optimization
,”
Technical Report No. TR06
.
40.
Liu
,
J.
,
Zhu
,
H.
,
Ma
,
Q.
,
Zhang
,
L.
, and
Xu
,
H.
,
2015
, “
An Artificial Bee Colony Algorithm With Guide of Global & Local Optima and Asynchronous Scaling Factors for Numerical Optimization
,”
Appl. Soft Comput.
,
37
(
C
), pp.
608
618
.
You do not currently have access to this content.