Recent developments in the automotive industry have led to more stringent requirements for transmission gear quality. This aspect, combined with a massive increase in the number of gears produced per year, has seen generating grinding become the finishing method of choice for mass production of gears. Due to the intrinsic nature of grinding, this process remains the only manufacturing phase that still requires the widespread use of lubricant. With the aim of improving the environmental sustainability of this process chain, recent attempts at performing dry grinding without lubricant have highlighted the critical aspect of thermal damage produced under these conditions. In the present work, a two-step finite element modeling approach is presented for predicting thermal damage during dry generating gear grinding. Grinding forces and thermal energy generated by the interaction of a single grain with the workpiece are first calculated based on real grain geometry acquired via computed tomography. Results of this single-grain model are then applied at a gear tooth level together with process kinematics to determine the temperature distribution during dry generating grinding. Single-grain and generating grinding tests are performed to verify the predicted onset of thermal damage and the ability to optimize process parameters using the proposed hierarchical modeling approach.

References

1.
Gupta
,
K.
,
Laubscher
,
R. F.
,
Davim
,
J. P.
, and
Jain
,
N. K.
,
2016
, “
Recent Developments in Sustainable Manufacturing of Gears: A Review
,”
J. Cleaner. Prod.
,
112
(
4
), pp.
3320
3330
.
2.
Moawad
,
A.
, and
Rousseau
,
A.
,
2012
, “
Impact of Transmission Technologies on Fuel Efficiency—Final Report
,” US Department of Transportation, Tech. Report No. DOT HS 811 667.
3.
Fischer
,
R.
,
Küçükay
,
F.
,
Jürgens
,
G.
,
Najork
,
R.
, and
Pollak
,
B.
,
2015
,
The Automotive Transmission Book
,
Springer
,
London
.
4.
Bihr
,
J.
,
Heider
,
M.
,
Otto
,
M.
,
Stahl
,
K.
,
Kume
,
T.
, and
Kato
,
M.
,
2014
, “
Gear Noise Prediction in Automotive Transmissions
,”
International Gear Conference
,
Lyon
.
5.
Wegener
,
K.
,
Bleicher
,
F.
,
Krajnik
,
P.
,
Hoffmeister
,
H.-W.
, and
Brecher
,
C.
,
2017
, “
Recent Developments in Grinding Machines
,”
CIRP Annal.
,
66
(
2
), pp.
779
802
.
6.
Bouzakis
,
K.-D.
,
Lili
,
E.
,
Michailidis
,
N.
, and
Friderikos
,
O.
,
2008
, “
Manufacturing of Cylindrical Gears by Generating Cutting Processes: A Critical Synthesis of Analysis Methods
,”
CIRP Annal.
,
57
(
2
), pp.
676
696
.
7.
Fratila
,
D.
,
2014
, “Environmentally Friendly Manufacturing Processes in the Context of Transition to Sustainable Production,”
Comprehensive Materials Processing
, Vol.
8
,
S.
Hashmi
,
G. F.
Batalha
,
C. J.
Van Tyne
,
B.
Yilbas
, and
N.
Bassim
, eds.,
Elsevier
,
Oxford
, pp.
163
175
.
8.
Alves
,
L.
,
Ruzzi
,
R.
,
Batista da Silva
,
R.
,
Tarrento
,
G.
,
Mello
,
H.
,
Aguiar
,
P.
, and
Bianchi
,
E.
,
2017
, “
Performance Evaluation of the Minimum Quantity of Lubricant Technique With Auxiliary Cleaning of the Grinding Wheel in Cylindrical Grinding of N2711 Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), pp.
121018
.
9.
Brinksmeier
,
E.
,
Heinzel
,
C.
, and
Wittmann
,
M.
,
1999
, “
Friction, Cooling and Lubrication in Grinding
,”
CIRP Annal.
,
48
(
2
), pp.
581
598
.
10.
Rowe
,
W. B.
,
2014
,
Principles of Modern Grinding Technology
, 2nd ed.,
Elsevier
,
Oxford
.
11.
Rowe
,
W. B.
,
2017
, “
Temperatures in Grinding—A Review
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), pp.
121001
.
12.
Yao
,
C.
,
Wang
,
T.
,
Xiao
,
W.
,
Huang
,
X.
, and
Ren
,
J.
,
2014
, “
Experimental Study on Grinding Force and Grinding Temperature of Aermet 100 Steel in Surface Grinding
,”
J. Mater. Process. Tech.
,
214
(
11
), pp.
2191
2199
.
13.
Guerrini
,
G.
,
Landi
,
E.
,
Peiffer
,
K.
, and
Fortunato
,
A.
,
2018
, “
Dry Grinding of Gears for Sustainable Automotive Transmission Production
,”
J. Cleaner. Prod.
,
176
, pp.
76
88
.
14.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
CIRP Annals
,
41
(
2
), pp.
677
688
.
15.
Nie
,
Z.
,
Wang
,
G.
,
Liu
,
D.
, and
Rong
,
Y.
,
2018
, “
A Statistical Model of Equivalent Grinding Heat Source Based on Random Distributed Grains
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051016
.
16.
Brinksmeier
,
E.
,
Aurich
,
J.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H.-W.
,
Klocke
,
F.
,
Peters
,
J.
,
Rentsch
,
R.
,
Stephenson
,
D.
,
Uhlmann
,
E.
,
Weinert
,
K.
, and
Wittmann
,
M.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Annal.
,
55
(
2
), pp.
667
696
.
17.
Anderson
,
D.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2008
, “
Experimental Validation of Numerical Thermal Models for Dry Grinding
,”
J. Mater. Proc. Technol.
,
204
(
1–3
), pp.
269
278
.
18.
Doman
,
D.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2009
, “
Finite Element Modeling Approaches in Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
2
), pp.
109
116
.
19.
Tahvilian
,
A. M.
,
Liu
,
Z.
,
Champliaud
,
H.
, and
Hazel
,
B.
,
2013
, “
Experimental and Finite Element Analysis of Temperature and Energy Partition to the Workpiece While Grinding With a Flexible Robot
,”
J. Mater. Proc. Technol.
,
213
(
12
), pp.
2292
2303
.
20.
Linke
,
B. S.
,
Garretson
,
I.
,
Torner
,
F.
, and
Seewig
,
J.
,
2017
, “
Grinding Energy Modeling Based on Friction, Plowing, and Shearing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121009
.
21.
Chen
,
X.
,
Öpöz
,
T. T.
, and
Oluwajobi
,
A.
,
2017
, “
Analysis of Grinding Surface Creation by Single-Grit Approach
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121007
.
22.
Jiang
,
J.
,
Ge
,
P.
,
Sun
,
S.
,
Wang
,
D.
,
Wang
,
Y.
, and
Yang
,
Y.
,
2016
, “
From the Microscopic Interaction Mechanism to the Grinding Temperature Field: An Integrated Modelling on the Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
110
, pp.
27
42
.
23.
Guerrini
,
G.
,
Fortunato
,
A.
,
Bruzzone
,
A. A.
, and
D’addona
,
D. M.
,
2018
, “
Abrasive Grains Micro Geometry: A Comparison Between Two Acquisition Methods
,”
Procedia CIRP
,
67
, pp.
302
306
.
24.
Grzesik
,
W.
,
2006
, “
Determination of Temperature Distribution in the Cutting Zone Using Hybrid Analytical-FEM Technique
,”
Int. J. Mach. Tools Manuf.
,
46
(
6
), pp.
651
658
.
25.
Morgan
,
M. N.
,
Rowe
,
W. B.
,
Black
,
S. C. E.
, and
Allanson
,
D. R.
,
1998
, “
Effective Thermal Properties of Grinding Wheels and Grains
,”
Proceedings of the Institution of Mechanical Engineers
, Part B: Journal of Engineering Manufacture, Vol.
212
, pp.
661
669
.
26.
Johnson
,
G.
, and
Cook
,
W.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
The Hague
.
27.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Application of Machining With Abrasives
, 2nd ed.,
Industrial Press
,
New York
.
28.
Yin
,
G.
, and
Marinescu
,
I. D.
,
2017
, “
A Heat Transfer Model of Grinding Process Based on Energy Partition Analysis and Grinding Fluid Cooling Application
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121015
.
29.
Liverani
,
E.
,
Sorgente
,
D.
,
Ascari
,
A.
,
Scintilla
,
L.
,
Palumbo
,
G.
, and
Fortunato
,
A.
,
2017
, “
Development of a Model for the Simulation of Laser Surface Heat Treatments With Use of a Physical Simulator
,”
J. Manuf. Process.
,
26
, pp.
262
268
.
You do not currently have access to this content.