Abstract

This study aims to model the effects of multiple laser peening (LP) on the mechanical properties of AA2024-T351 by including the material microstructure and residual stresses using the crystal plasticity finite element method (CPFEM). In this approach, the LP-induced compressive residual stress distribution is modeled through the insertion of the Eigenstrains as a function of depth, which is calibrated by the X-ray measured residual stresses. The simulated enhancement in the tensile properties after LP, caused by the formation of a near-surface work-hardened layer, fits the experimentally obtained tensile curves. The model calculated fatigue indicator parameters (FIPs) under the following cyclic loading application show a decrease in the near-surface driving forces for the crystal slip deformation after the insertion of the Eigenstrains. This leads to a higher high cycle fatigue (HCF) resistance and the possible transformation of sensitive locations for fatigue failure further to the depth after LP. Experimental observations on the enhancement in the HCF life, along with the relocation of fatigue crack nucleation sites further to the depth, reveal the improvement in the HCF properties due to the LP process and validate the numerical approach.

References

1.
Shin
,
Y. C.
,
Wu
,
B.
,
Lei
,
S.
,
Cheng
,
G. J.
, and
Lawrence Yao
,
Y.
,
2020
, “
Overview of Laser Applications in Manufacturing and Materials Processing in Recent Years
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110818
. 10.1115/1.4048397
2.
Lei
,
S.
,
Zhao
,
X.
,
Yu
,
X.
,
Hu
,
A.
,
Vukelic
,
S.
,
Jun
,
M. B.
,
Joe
,
H.-E.
,
Yao
,
Y. L.
, and
Shin
,
Y. C.
,
2020
, “
Ultrafast Laser Applications in Manufacturing Processes: A State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031005
. 10.1115/1.4045969
3.
Chupakhin
,
S.
,
Klusemann
,
B.
,
Huber
,
N.
, and
Kashaev
,
N.
,
2019
, “
Application of Design of Experiments for Laser Shock Peening Process Optimization
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1567
1581
. 10.1007/s00170-018-3034-2
4.
Smyth
,
N. A.
,
Toparli
,
M. B.
,
Fitzpatrick
,
M. E.
, and
Irving
,
P. E.
,
2019
, “
Recovery of Fatigue Life Using Laser Peening on 2024-T351 Aluminium Sheet Containing Scratch Damage: The Role of Residual Stress
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
5
), pp.
1161
1174
. 10.1111/ffe.12981
5.
Clauer
,
A. H.
,
2019
, “
Laser Shock Peening, the Path to Production
,”
Metals
,
9
(
6
), p.
626
. 10.3390/met9060626
6.
Watanabe
,
I.
,
McBride
,
M.
,
Newton
,
P.
, and
Kurtz
,
K. S.
,
2009
, “
Laser Surface Treatment to Improve Mechanical Properties of Cast Titanium
,”
Dental Mater.
,
25
(
5
), pp.
629
633
. 10.1016/j.dental.2008.11.006
7.
Takahashi
,
K.
,
Kogishi
,
Y.
,
Shibuya
,
N.
, and
Kumeno
,
F.
,
2020
, “
Effects of Laser Peening on the Fatigue Strength and Defect Tolerance of Aluminum Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
4
), pp.
845
856
. 10.1111/ffe.13201
8.
Zhang
,
R.
,
Zhou
,
X.
,
Gao
,
H.
,
Mankoci
,
S.
,
Liu
,
Y.
,
Sang
,
X.
,
Qin
,
H.
,
Hou
,
X.
,
Ren
,
Z.
,
Doll
,
G. L.
,
Martini
,
A.
,
Dong
,
Y.
,
Sahai
,
N.
, and
Ye
,
C.
,
2018
, “
The Effects of Laser Shock Peening on the Mechanical Properties and Biomedical Behavior of AZ31B Magnesium Alloy
,”
Surf. Coat. Technol.
,
339
, pp.
48
56
. 10.1016/j.surfcoat.2018.02.009
9.
Prabhakaran
,
S.
, and
Kalainathan
,
S.
,
2016
, “
Compound Technology of Manufacturing and Multiple Laser Peening on Microstructure and Fatigue Life of Dual-Phase Spring Steel
,”
Mater. Sci. Eng. A
,
674
, pp.
634
645
. 10.1016/j.msea.2016.08.031
10.
Irizalp
,
S. G.
,
Saklakoglu
,
N.
,
Akman
,
E.
, and
Demir
,
A.
,
2014
, “
Pulsed Nd: YAG Laser Shock Processing Effects on Mechanical Properties of 6061-T6 Alloy
,”
Opt. Laser Technol.
,
56
, pp.
273
277
. 10.1016/j.optlastec.2013.08.011
11.
Irizalp
,
S. G.
, and
Saklakoglu
,
N.
,
2016
, “
High Strength and High Ductility Behavior of 6061-T6 Alloy After Laser Shock Processing
,”
Opt. Lasers Eng.
,
77
, pp.
183
190
. 10.1016/j.optlaseng.2015.08.004
12.
Gujba
,
A.
, and
Medraj
,
M.
,
2014
, “
Laser Peening Process and its Impact on Materials Properties in Comparison With Shot Peening and Ultrasonic Impact Peening
,”
Materials
,
7
(
12
), pp.
7925
7974
. 10.3390/ma7127925
13.
Jiang
,
S. Q.
,
Zhou
,
J. Z.
,
Fan
,
Y. J.
,
Huang
,
S.
, and
Zhao
,
J. F.
,
2009
, “
Prediction on Residual Stress and Fatigue Life of Magnesium Alloy Treated by Laser Shot Peening
,”
Mater. Sci. Forum, Trans. Technol. Publ.
,
626–627
, pp.
393
398
. 10.4028/www.scientific.net/MSF.626-627.393
14.
Rodopoulos
,
C.
,
Romero
,
J.
,
Curtis
,
S.
,
de Los Rios
,
E.
, and
Peyre
,
P.
,
2003
, “
Effect of Controlled Shot Peening and Laser Shock Peening on the Fatigue Performance of 2024-T351 Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
12
(
4
), pp.
414
419
. 10.1361/105994903770342944
15.
Rodopoulos
,
C.
,
Kermanidis
,
A. T.
,
Statnikov
,
E.
,
Vityazev
,
V.
, and
Korolkov
,
O.
,
2007
, “
The Effect of Surface Engineering Treatments on the Fatigue Behavior of 2024-T351 Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
16
(
1
), pp.
30
34
. 10.1007/s11665-006-9004-0
16.
Dorman
,
M.
,
Toparli
,
M.
,
Smyth
,
N.
,
Cini
,
A.
,
Fitzpatrick
,
M.
, and
Irving
,
P.
,
2012
, “
Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Clad 2024 Aluminium Sheet Containing Scribe Defects
,”
Mater. Sci. Eng. A
,
548
, pp.
142
151
. 10.1016/j.msea.2012.04.002
17.
Zhou
,
J.
,
Huang
,
S.
,
Sheng
,
J.
,
Lu
,
J.
,
Wang
,
C.
,
Chen
,
K.
,
Ruan
,
H.
, and
Chen
,
H.
,
2012
, “
Effect of Repeated Impacts on Mechanical Properties and Fatigue Fracture Morphologies of 6061-T6 Aluminum Subject to Laser Peening
,”
Mater. Sci. Eng. A
,
539
, pp.
360
368
. 10.1016/j.msea.2012.01.125
18.
Hu
,
Y.
,
Li
,
Z.
,
Li
,
K.
, and
Yao
,
Z.
,
2014
, “
Predictive Modeling and Uncertainty Quantification of Laser Shock Processing by Bayesian Gaussian Processes With Multiple Outputs
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041014
. 10.1115/1.4027539
19.
Hatamleh
,
M. I.
,
Mahadevan
,
J.
,
Malik
,
A.
,
Qian
,
D.
, and
Kovacevic
,
R.
,
2019
, “
Prediction of Residual Stress Random Fields for Selective Laser Melted A357 Aluminum Alloy Subjected to Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101011
. 10.1115/1.4044418
20.
Vukelic
,
S.
,
Wang
,
Y.
,
Kysar
,
J. W.
, and
Yao
,
Y. L.
,
2009
, “
Dynamic Material Response of Aluminum Single Crystal Under Microscale Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031015
. 10.1115/1.3106034
21.
Fan
,
Y.
,
Wang
,
Y.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
,
2007
, “
Numerical Investigation of Opposing Dual Sided Microscale Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), p.
101011
. 10.1115/1.2540771
22.
Bucher
,
T.
,
Zhang
,
M.
,
Chen
,
C. J.
,
Verma
,
R.
,
Li
,
W.
, and
Yao
,
Y. L.
,
2019
, “
Laser Forming of Metal Foam Sandwich Panels: Effect of Panel Manufacturing Method
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051006
. 10.1115/1.4043194
23.
Hu
,
Y.
,
Yao
,
Z.
, and
Hu
,
J.
,
2006
, “
3-D FEM Simulation of Laser Shock Processing
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
1426
1435
. 10.1016/j.surfcoat.2006.02.018
24.
Hu
,
Y.
, and
Grandhi
,
R. V.
,
2012
, “
Efficient Numerical Prediction of Residual Stress and Deformation for Large-Scale Laser Shock Processing Using the Eigenstrain Methodology
,”
Surf. Coat. Technol.
,
206
(
15
), pp.
3374
3385
. 10.1016/j.surfcoat.2012.01.050
25.
Sun
,
Y.
,
Voyiadjis
,
G. Z.
,
Hu
,
W.
,
Meng
,
Q.
, and
Xu
,
Y.
,
2017
, “
Fatigue Damage Analysis of Double-Lap Bolted Joints Considering the Effects of Hole Cold Expansion and Bolt Clamping Force
,”
ASME J. Eng. Mater. Technol.
,
139
(
2
), p.
021007
. 10.1115/1.4035325
26.
Yu
,
Z.-Y.
,
Zhu
,
S.-P.
,
Liu
,
Q.
, and
Liu
,
Y.
,
2017
, “
Multiaxial Fatigue Damage Parameter and Life Prediction Without Any Additional Material Constants
,”
Materials
,
10
(
8
), p.
923
. 10.3390/ma10080923
27.
Bhamare
,
S.
,
Ramakrishnan
,
G.
,
Mannava
,
S. R.
,
Langer
,
K.
,
Vasudevan
,
V. K.
, and
Qian
,
D.
,
2013
, “
Simulation-Based Optimization of Laser Shock Peening Process for Improved Bending Fatigue Life of Ti–6Al–2Sn–4Zr–2Mo Alloy
,”
Surf. Coat. Technol.
,
232
, pp.
464
474
. 10.1016/j.surfcoat.2013.06.003
28.
Zhao
,
M.
,
Ji
,
X.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2020
, “
Phase Transformation Prediction Considering Crystallographic Orientation in Microgrinding Multiphase Material
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
104501
. 10.1115/1.4047492
29.
Acar
,
P.
,
2019
, “
Multi-scale Computational Modeling of Lightweight Aluminum-Lithium Alloys
,”
Heliyon
,
5
(
3
), p.
e01225
. 10.1016/j.heliyon.2019.e01225
30.
Häusler
,
I.
,
Schwarze
,
C.
,
Bilal
,
M. U.
,
Ramirez
,
D. V.
,
Hetaba
,
W.
,
Kamachali
,
R. D.
, and
Skrotzki
,
B.
,
2017
, “
Precipitation of T1 and θ′ Phase in Al-4Cu-1Li-0.25 Mn During Age Hardening: Microstructural Investigation and Phase-Field Simulation
,”
Materials
,
10
(
2
), p.
117
. 10.3390/ma10020117
31.
Rousseau
,
T.
,
Nouguier-Lehon
,
C.
,
Gilles
,
P.
, and
Hoc
,
T.
,
2018
, “
Finite Element Multi-Impact Simulations Using a Crystal Plasticity law Based on Dislocation Dynamics
,”
Int. J. Plast.
,
101
, pp.
42
57
. 10.1016/j.ijplas.2017.10.008
32.
Bennett
,
V.
, and
McDowell
,
D.
,
2003
, “
Polycrystal Orientation Distribution Effects on Microslip in High Cycle Fatigue
,”
Int. J. Fatigue
,
25
(
1
), pp.
27
39
. 10.1016/S0142-1123(02)00057-9
33.
Sauzay
,
M.
, and
Jourdan
,
T.
,
2006
, “
Polycrystalline Microstructure, Cubic Elasticity, and Nucleation of High-Cycle Fatigue Cracks
,”
Int. J. Fract.
,
141
(
3–4
), pp.
431
446
. 10.1007/s10704-006-9005-x
34.
McDowell
,
D.
, and
Dunne
,
F.
,
2010
, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1521
1542
. 10.1016/j.ijfatigue.2010.01.003
35.
Przybyla
,
C. P.
, and
McDowell
,
D. L.
,
2011
, “
Simulated Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Duplex Ti–6Al–4V
,”
Int. J. Plast.
,
27
(
12
), pp.
1871
1895
. 10.1016/j.ijplas.2011.01.006
36.
Musinski
,
W. D.
,
2014
,
Modeling the Effects of Shot-Peened Residual Stresses and Inclusions on Microstructure-Sensitive Fatigue of Ni-Base Superalloy Components
,
PhD Thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
37.
Przybyla
,
C. P.
,
Musinski
,
W. D.
,
Castelluccio
,
G. M.
, and
McDowell
,
D. L.
,
2013
, “
Microstructure-Sensitive HCF and VHCF Simulations
,”
Int. J. Fatigue
,
57
, pp.
9
27
. 10.1016/j.ijfatigue.2012.09.014
38.
Przybyla
,
C. P.
, and
McDowell
,
D. L.
,
2010
, “
Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100
,”
Int. J. Plast.
,
26
(
3
), pp.
372
394
. 10.1016/j.ijplas.2009.08.001
39.
Castelluccio
,
G. M.
, and
McDowell
,
D. L.
,
2013
, “
Fatigue Life Prediction of Polycrystals Under Multiaxial Straining
,”
Proceedings of 13th International Conference on Fracture
,
Beijing, China
,
June 16–21
.
40.
Llavori
,
I.
,
Etxebarria
,
U.
,
López-Jauregi
,
A.
,
Ulacia
,
I.
,
Ugarte
,
D.
,
Esnaola
,
J. A.
, and
Larrañaga
,
M.
,
2018
, “
A Numerical Analysis of Multiaxial Fatigue in a Butt Weld Specimen Considering Residual Stresses
,”
In MATEC Web of Conferences
,
165
, p.
21005
.
EDP Sciences
.
41.
Voothaluru
,
R.
, and
Liu
,
C. R.
,
2014
, “
A Crystal Plasticity Based Methodology for Fatigue Crack Initiation Life Prediction in Polycrystalline Copper
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
6
), pp.
671
681
. 10.1111/ffe.12152
42.
Luo
,
C.
,
Wei
,
J.
,
Parra-Garcia
,
M.
,
Chattopadhyay
,
A.
, and
Peralta
,
P.
,
2009
, “
Fatigue Damage Prediction in Metallic Materials Based on Multiscale Modeling
,”
AIAA journal
,
47
(
11
), pp.
2567
2576
. 10.2514/1.39559
43.
Hennessey
,
C. D.
,
2015
,
Modeling Microstructurally Small Crack Growth in Al 7075-T6
,
PhD Thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
44.
Wang
,
H.
,
Wu
,
P.
,
Tomé
,
C.
, and
Wang
,
J.
,
2012
, “
Study of Lattice Strains in Magnesium Alloy AZ31 Based on a Large Strain Elastic-Viscoplastic Self-consistent Polycrystal Model
,”
Int. J. Solids Struct.
,
49
(
15–16
), pp.
2155
2167
. 10.1016/j.ijsolstr.2012.04.026
45.
Przybyla
,
C. P.
,
2010
,
Microstructure-Sensitive Extreme Value Probabilities of Fatiguein Advanced Engineering Alloys
,
PhD Thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
46.
Musinski
,
W. D.
, and
McDowell
,
D. L.
,
2015
, “
On the Eigenstrain Application of Shot-Peened Residual Stresses Within a Crystal Plasticity Framework: Application to Ni-Base Superalloy Specimens
,”
Int. J. Mech. Sci.
,
100
, pp.
195
208
. 10.1016/j.ijmecsci.2015.06.020
47.
Luo
,
M.
,
Hu
,
Y.
,
Qian
,
D.
, and
Yao
,
Z.
,
2018
, “
Numerical Modeling and Mechanism Analysis of Hybrid Heating and Shock Process for Laser-Assisted Laser Peen Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111009
. 10.1115/1.4040914
48.
Coratella
,
S.
,
Sticchi
,
M.
,
Toparli
,
M.
,
Fitzpatrick
,
M.
, and
Kashaev
,
N.
,
2015
, “
Application of the Eigenstrain Approach to Predict the Residual Stress Distribution in Laser Shock Peened AA7050-T7451 Samples
,”
Surf. Coat. Technol.
,
273
, pp.
39
49
. 10.1016/j.surfcoat.2015.03.026
49.
Kartal
,
M.
,
Kiwanuka
,
R.
, and
Dunne
,
F.
,
2015
, “
Determination of Sub-surface Stresses at Inclusions in Single Crystal Superalloy Using HR-EBSD, Crystal Plasticity and Inverse Eigenstrain Analysis
,”
Int. J. Solids Struct.
,
67
, pp.
27
39
. 10.1016/j.ijsolstr.2015.02.023
50.
Song
,
X.
,
2010
,
Modelling Residual Stresses and Deformation in Metal at Different Scales
,
Oxford University
,
UK
.
51.
Clark
,
B. C.
,
Castelluccio
,
G. M.
,
Reiterer
,
M.
,
McDowell
,
D.
, and
Neu
,
R.
,
2019
, “
Microstructure-Sensitive Fatigue Modelling of Medical-Grade Fine Wire
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
1
), pp.
152
165
. 10.1111/ffe.12879
52.
Efthymiadis
,
P.
,
Pinna
,
C.
, and
Yates
,
J. R.
,
2019
, “
Fatigue Crack Initiation in AA2024: A Coupled Micromechanical Testing and Crystal Plasticity Study
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
1
), pp.
321
338
. 10.1111/ffe.12909
53.
Rovinelli
,
A.
,
Guilhem
,
Y.
,
Proudhon
,
H.
,
Lebensohn
,
R. A.
,
Ludwig
,
W.
, and
Sangid
,
M. D.
,
2017
, “
Assessing Reliability of Fatigue Indicator Parameters for Small Crack Growth via a Probabilistic Framework
,”
Modell. Simul. Mater. Sci. Eng.
,
25
(
4
), p.
045010
. 10.1088/1361-651X/aa6c45
54.
Castelluccio
,
G. M.
, and
McDowell
,
D. L.
,
2015
, “
Microstructure and Mesh Sensitivities of Mesoscale Surrogate Driving Force Measures for Transgranular Fatigue Cracks in Polycrystals
,”
Mater. Sci. Eng. A
,
639
, pp.
626
639
. 10.1016/j.msea.2015.05.048
55.
Chen
,
B.
,
Jiang
,
J.
, and
Dunne
,
F. P.
,
2018
, “
Is Stored Energy Density the Primary Meso-Scale Mechanistic Driver for Fatigue Crack Nucleation?
,”
Int. J. Plast.
,
101
, pp.
213
229
. 10.1016/j.ijplas.2017.11.005
56.
Fatemi
,
A.
, and
Socie
,
D. F.
,
1988
, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
3
), pp.
149
165
. 10.1111/j.1460-2695.1988.tb01169.x
57.
Gates
,
N. R.
, and
Fatemi
,
A.
,
2017
, “
Multiaxial Variable Amplitude Fatigue Life Analysis Using the Critical Plane Approach, Part I: Un-notched Specimen Experiments and Life Estimations
,”
Int. J. Fatigue
,
105
, pp.
283
295
. 10.1016/j.ijfatigue.2017.09.008
58.
Castelluccio
,
G.
, and
McDowell
,
D. L.
,
2013
, “
Variability of the Fatigue Driving Force Within Grains of Polycrystals
,”
13th International Conference on Fracture
,
Beijing, China
,
June 16–12
.
59.
Zhang
,
T.
,
Li
,
L.
,
Lu
,
S. H.
, and
Gong
,
H.
,
2018
, “
Simulation of Prestressed Ultrasonic Peen Forming on Bending Deformation and Residual Stress Distribution
,”
Int. J. Adv. Manuf. Technol.
,
98
(
1
), pp.
385
393
. 10.1007/s00170-018-2287-0
60.
ASTM
,
I.
,
2016
,
ASTM E8/E8M-16a: Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
61.
Standard
,
A.
E606-04E1, 2004
,”
Standard Practice for Strain-Controlled Fatigue Testing
.
62.
Priddy
,
M. W.
,
2016
,
Exploration of Forward and Inverse Protocols for Property Optimization of Ti-6Al-4V
,
PhD Thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
63.
Li
,
L.
,
Shen
,
L.
,
Proust
,
G.
,
Loo Chin Moy
,
C.
, and
Ranzi
,
G.
,
2012
, “
A Crystal Plasticity Representative Volume Element Model for Simulating Nanoindentation of Aluminium Alloy 2024
,”
4th International Conference on Computational Methods (ICCM2012)
,
Gold Coast, Australia
,
Nov. 25–27
.
64.
Li
,
Y.
,
Aubin
,
V.
,
Rey
,
C.
, and
Bompard
,
P.
,
2012
, “
Polycrystalline Numerical Simulation of Variable Amplitude Loading Effects on Cyclic Plasticity and Microcrack Initiation in Austenitic Steel 304L
,”
Int. J. Fatigue
,
42
, pp.
71
81
. 10.1016/j.ijfatigue.2011.07.003
65.
Zhang
,
J.
,
Li
,
Z.
,
Xu
,
F.
, and
Bao
,
C.
,
2019
, “
Quantification and Modelling of the Multiphase-Coupled Strengthening Effect in Al-Cu-Li Alloy
,”
Metals
,
9
(
10
), p.
1038
. 10.3390/met9101038
66.
Li
,
Y. L.
,
Kohar
,
C. P.
,
Mishra
,
R. K.
, and
Inal
,
K.
,
2020
, “
A New Crystal Plasticity Constitutive Model for Simulating Precipitation-Hardenable Aluminum Alloys
,”
Int. J. Plast.
,
132
, p.
102759
. 10.1016/j.ijplas.2020.102759
67.
Li
,
L.
,
Shen
,
L.
,
Proust
,
G.
,
Moy
,
C. K. S.
, and
Ranzi
,
G.
,
2013
, “
Three-Dimensional Crystal Plasticity Finite Element Simulation of Nanoindentation on Aluminium Alloy 2024
,”
Mater. Sci. Eng. A
,
579
, pp.
41
49
. 10.1016/j.msea.2013.05.009
68.
Clayton
,
J. D.
,
2009
, “
Modeling Effects of Crystalline Microstructure, Energy Storage Mechanisms, and Residual Volume Changes on Penetration Resistance of Precipitate-Hardened Aluminum Alloys
,”
Compos. Part B: Eng.
,
40
(
6
), pp.
443
450
. 10.1016/j.compositesb.2009.01.009
69.
Sun
,
R.
,
Li
,
L.
,
Zhu
,
Y.
,
Guo
,
W.
,
Peng
,
P.
,
Cong
,
B.
,
Sun
,
J.
,
Che
,
Z.
,
Li
,
B.
,
Guo
,
C.
, and
Liu
,
L.
,
2018
, “
Microstructure, Residual Stress and Tensile Properties Control of Wire-Arc Additive Manufactured 2319 Aluminum Alloy With Laser Shock Peening
,”
J. Alloys Compd.
,
747
, pp.
255
265
. 10.1016/j.jallcom.2018.02.353
You do not currently have access to this content.