Abstract

Powder bed fusion (PBF) has become a widely used additive manufacturing (AM) technology to produce metallic parts. In PBF, thermal field evolution during the manufacturing process plays an important role in determining both geometric and mechanical properties of the fabricated parts. Thermal simulation of the PBF process is computationally challenging due to the geometric complexity of the manufacturing process and the inherent computational complexity that requires a numerical solution at every time increment of the process. We propose a new thermal simulation of the PBF process based on the laser scan path. Our approach is unique in that it simulates the thermal history of the process on the discretization of the geometry implied by the process plan (i.e., scan path), as opposed to voxelization or meshing of the design geometry. The discretization is based on the laser scan path, and the thermal model is formulated directly in terms of the manufacturing primitives. An element growth mechanism is introduced to simulate the evolution of the melt pool during the manufacturing process. A spatial data structure, called contact graph, is used to represent the discretized domain and capture all thermal interactions during the simulation. The simulation is localized through exploiting spatial and temporal locality. This limits the need to update to at most a constant number of elements at each time-step, which implies that the proposed simulation not only scales to handle three-dimensional (3D) printed components of arbitrary complexity but also can achieve real-time performance. The simulation is fully implemented and validated against experimental data and other simulation results.

References

1.
Sames
,
W. J.
,
List
,
F.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
2.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
.
3.
Liu
,
X.
, and
Shapiro
,
V.
,
2016
, “
Homogenization of Material Properties in Additively Manufactured Structures
,”
Comput.-Aided Des.
,
78
, pp.
71
82
.
4.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Part-Scale Finite Element Modeling of the Selective Laser Melting Process With Layer-Wise Adaptive Remeshing for Thermal History and Porosity Prediction
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121006
.
5.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application of Metal Treatments
,”
Trans. ASME
,
68
(
8
), pp.
849
866
.
6.
Devesse
,
W.
,
De Baere
,
D.
, and
Guillaume
,
P.
,
2014
, “
The Isotherm Migration Method in Spherical Coordinates With a Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
75
, pp.
726
735
.
7.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Models
,”
International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1
.
8.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2019
, “
Phase Transformation Advancements of the Enriched Analytic Solution Method for Additive Manufacturing Applications
,”
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Anaheim, CA
, Vol.
59179
, American Society of Mechanical Engineers, p.
V001T02A035
.
9.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Michopoulos
,
J. G.
, and
Iliopoulos
,
A. P.
,
2019
, “
Enriched Analytical Solutions for Additive Manufacturing Modeling and Simulation
,”
Addit. Manuf.
,
25
, pp.
437
447
.
10.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2019
, “
Toward Feedback Control for Additive Manufacturing Processes Via Enriched Analytical Solutions
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031009
.
11.
Krishnakumar
,
A.
,
Suresh
,
K.
, and
Chandrasekar
,
A.
,
2015
, “
Towards Assembly-Free Methods for Additive Manufacturing Simulation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
12.
Yan
,
W.
,
Smith
,
J.
,
Ge
,
W.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Multiscale Modeling of Electron Beam and Substrate Interaction: a New Heat Source Model
,”
Comput. Mech.
,
56
(
2
), pp.
265
276
.
13.
Yan
,
W.
,
Ge
,
W.
,
Smith
,
J.
,
Wagner
,
G.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Towards High-Quality Selective Beam Melting Technologies: Modeling and Experiments of Single Track Formations
,”
26th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
.
14.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
,
Wolff
,
S.
,
Wu
,
H.
,
Ndip-Agbor
,
E.
,
Mozaffar
,
M.
,
Ehmann
,
K.
,
Cao
,
J.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2018
, “
Data-Driven Multi-Scale Multi-Physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
.
15.
Dong
,
L.
,
Makradi
,
A.
,
Ahzi
,
S.
, and
Remond
,
Y.
,
2009
, “
Three-Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
700
706
.
16.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D Fe Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.
17.
Körner
,
C.
,
Bauereiß
,
A.
, and
Attar
,
E.
,
2013
, “
Fundamental Consolidation Mechanisms During Selective Beam Melting of Powders
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
8
), p.
085011
.
18.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
19.
King
,
W.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
, and
Khairallah
,
S. A.
,
2015
, “
Overview of Modelling and Simulation of Metal Powder Bed Fusion Process At Lawrence Livermore National Laboratory
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
957
968
.
20.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
21.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-Physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
.
22.
Yan
,
W.
,
Qian
,
Y.
,
Ge
,
W.
,
Lin
,
S.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2018
, “
Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective Electron Beam Melting: Inter-Layer/Track Voids Formation
,”
Mater. Des.
,
141
, pp.
210
219
.
23.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
,
Birnbaum
,
A. J.
, and
Lambrakos
,
S. G.
,
2018
, “
On the Multiphysics Modeling Challenges for Metal Additive Manufacturing Processes
,”
Addit. Manuf.
,
22
, pp.
784
799
.
24.
Zohdi
,
T. I.
,
2014
, “
Additive Particle Deposition and Selective Laser Processing-A Computational Manufacturing Framework
,”
Comput. Mech.
,
54
(
1
), pp.
171
191
.
25.
Zohdi
,
T.
,
2014
, “
A Direct Particle-Based Computational Framework for Electrically Enhanced Thermo-Mechanical Sintering of Powdered Materials
,”
Math. Mech. Solids
,
19
(
1
), pp.
93
113
.
26.
Zhang
,
Y.
, and
Shapiro
,
V.
,
2018
, “
Linear-Time Thermal Simulation of As-Manufactured Fused Deposition Modeling Components
,”
J. Manuf. Sci. Eng.
,
140
(
7
), p.
071002
.
27.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
28.
Zhang
,
Y.
,
Shapiro
,
V.
, and
Witherell
,
P.
,
2019
, “
Towards Thermal Simulation of Powder Bed Fusion on Path Level
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, American Society of Mechanical Engineers Digital Collection.
29.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2016
, “
A Coupled Discrete Element-Finite Difference Model of Selective Laser Sintering
,”
Granul. Matter
,
18
(
2
), p.
21
.
30.
Gusarov
,
A.
, and
Kruth
,
J.-P.
,
2005
, “
Modelling of Radiation Transfer in Metallic Powders At Laser Treatment
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3423
3434
.
31.
Gusarov
,
A.
,
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2009
, “
Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone At Selective Laser Melting
,”
ASME J. Heat. Transfer-Trans. ASME
,
131
(
7
), p.
072101
.
32.
Zhang
,
Y.
,
2020
, “
A Scalable Framework for Contact-Aware Thermal Simulation of Additive Manufacturing Processes
,”
Ph.D. thesis
,
The University of Wisconsin-Madison
.
33.
Khairallah
,
S. A.
, and
Anderson
,
A.
,
2014
, “
Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2627
2636
.
34.
Fox
,
J. C.
,
Lane
,
B. M.
, and
Yeung
,
H.
,
2017
, “
Measurement of Process Dynamics Through Coaxially Aligned High Speed NIR Imaging in Laser Powder Bed Fusion Additive Manufacturing
,”
SPIE Commercial and Scientific Sensing and Imaging
,
Anaheim, CA
.
35.
Moges
,
T.
,
Yan
,
W.
,
Lin
,
S.
,
Ameta
,
G.
,
Fox
,
J.
, and
Witherell
,
P.
,
2018
, “
Quantifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models and Simulations
,”
26th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
.
36.
Lane
,
B. M.
,
Mekhontsev
,
S.
,
Grantham
,
S. E.
,
Vlasea
,
M.
,
Whiting
,
J. G.
,
Yeung
,
H.
,
Fox
,
J. C.
,
Zarobila
,
C. J.
,
Neira
,
J. E.
,
McGlauflin
,
M. L.
,
Hanssen
,
L. M.
,
Moylan
,
S. P.
,
Donmez
,
M. A.
, and
Rice
,
J. P.
,
2016
, “
Design, Developments, and Results From the NIST Additive Manufacturing Metrology Testbed (AMMT)
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
1145
1160
.
37.
Yeung
,
H.
, and
Lane
,
B.
,
2020
, “
A Residual Heat Compensation Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Manuf. Lett.
,
25
, pp.
56
59
.
38.
Turk
,
G.
, and
Levoy
,
M.
,
1994
, “
Zippered Polygon Meshes From Range Images
,”
ACM SIGGRAPH
,
Orlando, FL
,
July 24–29
, pp.
311
318
.
You do not currently have access to this content.