Abstract

Application of additively manufactured steels is unavoidably involved in the resistance spot welding with conventionally manufactured steels. However, the microstructural evolution of an additive manufactured steel at high temperatures is still unknown, especially for the rapid solidification process. This paper investigated the microstructural evolution of a selective laser melted maraging steel during the rapid solidification process via resistance spot welding. Asymmetrical fusion zone with boat shape was found in the spot weld due to the rougher surface and larger electrical resistance of maraging steel via selective laser melting (SLM) process. The rapid expansion of fusion zone at end of welding process was caused by the carbide formation at the heat-affected zone of maraging steel via selective laser melting process. Besides, printing orientation affected the surface roughness of a selective laser melted maraging steel and subsequently significantly influenced the early stage of formation of fusion zone of additively manufactured maraging steel. We expect that our findings will pave the way to the future application of additively manufactured steels in the industries.

References

1.
Martin
,
J. H.
,
Yahata
,
B. D.
,
Hundley
,
J. M.
,
Mayer
,
J. A.
,
Schaedler
,
T. A.
, and
Pollock
,
T. M.
,
2017
, “
3D Printing of High-Strength Aluminium Alloys
,”
Nature
,
549
(
7672
), pp.
365
369
.
2.
Yan
,
L.
,
Chen
,
Y.
, and
Liou
,
F.
,
2020
, “
Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition
,”
Addit. Manuf.
,
31
, p.
100901
.
3.
Paolini
,
A.
,
Kollmannsberger
,
S.
, and
Rank
,
E.
,
2019
, “
Additive Manufacturing in Construction: A Review on Processes, Applications, and Digital Planning Methods
,”
Addit. Manuf.
,
30
, p.
100894
.
4.
Fayazfar
,
H.
,
Salarian
,
M.
,
Rogalsky
,
A.
,
Sarker
,
D.
,
Russo
,
P.
,
Paserin
,
V.
, and
Toyserkani
,
E.
,
2018
, “
A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties
,”
Mater. Des.
,
144
, pp.
98
128
.
5.
Yin
,
J.
,
Wang
,
D.
,
Yang
,
L.
,
Wei
,
H.
, and
Dong
,
P.
,
2020
, “
Correlation Between Forming Quality and Spatter Dynamics in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
31
, p.
100958
.
6.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
7.
Murr
,
L. E.
,
Martinez
,
E.
,
Amato
,
K. N.
,
Gaytan
,
S. M.
,
Hernandez
,
J.
,
Ramirez
,
D. A.
,
Shindo
,
P. W.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2012
, “
Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science
,”
J. Mater. Res. Technol.
,
1
(
1
), pp.
42
54
.
8.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
9.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
.
10.
Gu
,
D.D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
11.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Micro Structural Evolution During Selective Laser Melting of Ti-6Al-4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
12.
Thijs
,
L.
,
Kempen
,
K.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2013
, “
Fine-Structured Aluminium Products With Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder
,”
Acta Mater.
,
61
(
5
), pp.
1809
1819
.
13.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
14.
Casalino
,
G.
,
Campanelli
,
S. L.
,
Contuzzi
,
N.
, and
Ludovico
,
A. D.
,
2015
, “
Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel
,”
Opt. Laser Technol.
,
65
, pp.
151
158
.
15.
Starr
,
T. L.
,
Rafi
,
K.
,
Stucker
,
B.
, and
Scherzer
,
C. M.
,
2012
, “
Controlling Phase Composition
,”
23rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2012
,
Austin, TX
,
Aug. 6–8
, pp.
439
446
.
16.
Beese
,
A. M.
,
Wang
,
Z.
,
Stoica
,
A. D.
, and
Ma
,
D.
,
2018
, “
Absence of Dynamic Strain Aging in an Additively Manufactured Nickel-Base Superalloy
,”
Nat. Commun.
,
9
(
1
), p.
2083
.
17.
Luo
,
C.
, and
Zhang
,
Y.
,
2019
, “
Effect of Printing Orientation on Anisotropic Properties in Resistance Spot Welded 316L Stainless Steels via Selective Laser Melting
,”
Mater. Lett.
,
254
, pp.
237
241
.
18.
Mooney
,
B.
,
Kourousis
,
K. I.
,
Raghavendra
,
R.
, and
Agius
,
D.
,
2019
, “
Process Phenomena Influencing the Tensile and Anisotropic Characteristics of Additively Manufactured Maraging Steel
,”
Mat. Sci. Eng. A
,
745
, pp.
115
125
.
19.
Kürnsteiner
,
P.
,
Wilms
,
M. B.
,
Weisheit
,
A.
,
Barriobero-Vila
,
P.
,
Jägle
,
E. A.
, and
Raabe
,
D.
,
2017
, “
Massive Nanoprecipitation in an Fe-19Ni-xAl Maraging Steel Triggered by the Intrinsic Heat Treatment During Laser Metal Deposition
,”
Acta Mater.
,
129
, pp.
52
60
.
20.
Liverani
,
E.
,
Toschi
,
S.
,
Ceschini
,
L.
, and
Fortunato
,
A.
,
2017
, “
Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
249
, pp.
255
263
.
21.
Everton
,
S.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R.
, and
Clare
,
A.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
22.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
23.
Qiu
,
D.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
, “
A Micro Contact Model for Electrical Contact Resistance Prediction Between Roughness Surface and Carbon Fiber Paper
,”
Int. J. Mech. Sci.
,
124–125
, pp.
37
47
.
24.
Miao
,
J.
,
Chen
,
S.
,
Liu
,
H.
, and
Zhang
,
X.
,
2018
, “
Low-Temperature Nanowelding Ultrathin Silver Nanowire Sandwiched Between Polydopamine-Functionalized Graphene and Conjugated Polymer for Highly Stable and Flexible Transparent Electrodes
,”
Chem. Eng. J.
,
345
, pp.
260
270
.
25.
Sidambe
,
A. T.
,
2018
, “
Effects of Build Orientation on 3D-Printed Co-Cr-Mo: Surface Topography and L929 Fibroblast Cellular Response
,”
Int. J. Adv. Manuf. Tech.
,
99
(
1–4
), pp.
867
880
.
26.
Yu
,
W.
,
Sing
,
S. L.
,
Chua
,
C. K.
, and
Tian
,
X.
,
2019
, “
Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
792
, pp.
574
581
.
27.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2017
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
, pp.
103
112
.
28.
Calignano
,
F.
,
2018
, “
Investigation of the Accuracy and Roughness in the Laser Powder Bed Fusion Process
,”
Virtual Phys. Prototy.
,
13
(
2
), pp.
97
104
.
29.
Babu
,
S. S.
,
Santella
,
M. L.
,
Feng
,
Z.
,
Riemer
,
B. W.
, and
Cohron
,
J. W.
,
2001
, “
Empirical Model of Effects of Pressure and Temperature on Electrical Contact Resistance of Metals
,”
Sci. Technol. Weld. Joining
,
6
(
3
), pp.
126
132
.
30.
Yang
,
J.
,
Yan
,
D.
,
Huang
,
W.
,
Li
,
J.
,
Pu
,
J.
,
Chi
,
B.
, and
Jian
,
L.
,
2018
, “
Improvement on Durability and Thermal Cycle Performance for Solid Oxide Fuel Cell Stack With External Manifold Structure
,”
Energy
,
149
, pp.
903
913
.
31.
Wan
,
Z.
,
Wang
,
H.-P.
,
Chen
,
N.
,
Wang
,
M.
, and
Carlson
,
B. E.
,
2017
, “
Characterization of Intermetallic Compound at the Interfaces of Al-Steel Resistance Spot Welds
,”
J. Mater. Process. Technol.
,
242
, pp.
12
23
.
32.
Ma
,
C.
,
Chen
,
D. L.
,
Bhole
,
S. D.
,
Boudreau
,
G.
,
Lee
,
A.
, and
Biro
,
E.
,
2008
, “
Microstructure and Fracture Characteristics of Spot-Welded DP600 Steel
,”
Mat. Sci. Eng. A
,
485
(
1
), pp.
334
346
.
33.
Tan
,
C.
,
Zhou
,
K.
,
Ma
,
W.
,
Zhang
,
P.
,
Liu
,
M.
, and
Kuang
,
T.
,
2017
, “
Microstructural Evolution, Nanoprecipitation Behavior and Mechanical Properties of Selective Laser Melted High-Performance Grade 300 Maraging Steel
,”
Mater. Des.
,
134
, pp.
23
34
.
You do not currently have access to this content.