Abstract

The support is a key factor affecting performance of face-grinding spindle. However, advantage of traditional rolling element bearing is not highlighted when it is for large-size face grinding. This technical brief aims to develop a combined support for the face-grinding spindle consisting of a water-lubricated hydrostatic thrust bearing and two types of radial rolling bearings, and the flexible rotor dynamics of the spindle with the combined support is analyzed using the modified transfer matrix method. The results show that the rotational stiffness of water-lubricated hydrostatic thrust bearing can increase the radial stiffness of the face-grinding spindle, so the small-size rolling bearings can be utilized as the radial support for the spindle by aid of such rotational stiffness. A comparative study of comprehensive performance between the spindle supported by rolling bearings and the replacement spindle designed with our proposed combined support shows that the proposed one has technical advantage of large axial load-carrying capacity, low frictional power loss, low temperature rise, etc.

References

1.
Abele
,
E.
,
Altintas
,
Y.
, and
Brecher
,
C.
,
2010
, “
Machine Tool Spindle Units
,”
CIRP Ann. – Manuf. Technol.
,
59
(
2
), pp.
781
802
.
2.
Zhang
,
S. J.
,
To
,
S.
,
Zhang
,
G. Q.
, and
Zhu
,
Z. W.
,
2015
, “
A Review of Machine-Tool Vibration and its Influence upon Surface Generation in Ultra-Precision Machining
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
34
42
.
3.
Lin
,
C.
,
Lin
,
Y.
, and
Chu
,
C.
,
2013
, “
Dynamic Models and Design of Spindle-Bearing Systems of Machine Tools: A Review
,”
Int. J. Precis. Eng. Manuf.
,
14
(
3
), pp.
513
521
.
4.
Cao
,
H.
,
Zhang
,
X.
, and
Chen
,
X.
,
2017
, “
The Concept and Progress of Intelligent Spindle: a Review
,”
Int. J. Mach. Tools Manuf.
,
112
, pp.
21
52
.
5.
Gupta
,
P. K.
,
2011
, “
Current Status of and Future Innovations in Rolling Bearing Modeling
,”
Tribol. Trans.
,
54
(
3
), pp.
394
403
.
6.
Hong
,
S.
, and
Tong
,
V.
,
2016
, “
Rolling-Element Bearing Modeling: a Review
,”
Int. J. Precis. Eng. Manuf.
,
17
(
12
), pp.
1729
1749
.
7.
Sharma
,
A.
,
Upadhyay
,
N.
,
Kankar
,
P. K.
, and
Amarnath
,
M.
,
2018
, “
Nonlinear Dynamic Investigations on Rolling Element Bearings: a Review
,”
Adv. Mech. Eng.
,
10
(
3
), pp.
1
15
.
8.
Xi
,
S.
,
Cao
,
H.
,
Chen
,
X.
, and
Niu
,
L.
,
2018
, “
A Dynamic Modeling Approach for Spindle Bearing System Supported by Both Angular Contact Ball Bearing and Floating Displacement Bearing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021014
.
9.
Rowe
,
W. B.
,
1989
, “
Advances in Hydrostatic and Hybrid Bearing Technology
,”
Proc. Inst. Mech. Eng., Part C
,
203
(
4
), pp.
225
242
.
10.
Takabi
,
J.
, and
Khonsari
,
M. M.
,
2015
, “
On the Thermally-Induced Seizure in Bearings: A Review
,”
Tribol. Int.
,
91
, pp.
118
130
.
11.
Liu
,
Z.
,
Wang
,
Y.
,
Cai
,
L.
,
Zhao
,
Y.
,
Cheng
,
Q.
, and
Dong
,
X.
,
2017
, “
A Review of Hydrostatic Bearing System: Researches and Applications
,”
Adv. Mech. Eng.
,
9
(
10
), pp.
1
27
.
12.
Esparza
,
L. F. M.
,
Gortari
,
J. G. C.
, and
Uziel
,
E. J. C.
,
2017
, “
Design of Hybrid Hydrostatic/Hydrodynamic Journal Bearings for Optimum Self-Compensation Under Misaligning External Loads
,”
ASME J. Tribol.
,
139
(
4
), p.
041702
.
13.
Kim
,
M.
,
Jang
,
G.
, and
Kim
,
H.
,
2010
, “
Stability Analysis of a Disk-Spindle System Supported by Coupled Journal and Thrust Bearings Considering Five Degrees of Freedom
,”
Tribol. Int.
,
43
(
8
), pp.
1479
1490
.
14.
Zhang
,
S.
,
To
,
S.
, and
Wang
,
H.
,
2013
, “
A Theoretical and Experimental Investigation Into Five-DOF Dynamic Characteristics of an Aerostatic Bearing Spindle in Ultra-Precision Diamond Turning
,”
Int. J. Mach. Tool Manuf.
,
71
(
8
), pp.
1
10
.
15.
Feng
,
H.
, and
Jiang
,
S.
,
2017
, “
Dynamic Analysis of Water-Lubricated Motorized Spindle Considering Tilting Effect of Thrust Bearing
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
20
), pp.
3780
3790
.
16.
Shi
,
J.
,
Cao
,
H.
, and
Maroju
,
N. K.
,
2020
, “
Dynamic Modeling of Aerostatic Spindle with Shaft Tilt Deformation
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021006
.
17.
Cao
,
Y.
, and
Altintas
,
Y.
,
2004
, “
A General Method for the Modeling of Spindle-Bearing Systems
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1089
1104
.
18.
Li
,
H.
, and
Shin
,
Y. C.
,
2004
, “
Integrated Dynamic Thermos-Mechanical Modeling of High Speed Spindles, Part 1: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
148
158
.
19.
Gagnol
,
V.
,
Bouzgarrou
,
B.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Stability-Based Spindle Design Optimization
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
407
415
.
20.
Cao
,
Y.
, and
Altintas
,
Y.
,
2007
, “
Modeling of Spindle-Bearing and Machine Tool Systems for Virtual Simulation of Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1342
1350
.
21.
Li
,
Y.
,
Chen
,
X.
,
Zhang
,
P.
, and
Zhou
,
J.
,
2017
, “
Dynamics Modeling and Modal Experimental Study of High Speed Motorized Spindle
,”
J. Mech. Sci. Technol.
,
31
(
3
), pp.
1049
1056
.
22.
Lee
,
A.
,
Kang
,
Y.
, and
Liu
,
S.
,
1991
, “
A Modified Transfer Matrix Method for Linear Rotor-Bearing Systems
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
776
783
.
23.
Jiang
,
S.
, and
Zheng
,
S.
,
2010
, “
Dynamic Design of a High-Speed Motorized Spindle-Bearing System
,”
ASME J. Mech. Des.
,
132
(
3
), p.
034501
.
24.
Feng
,
H.
, and
Jiang
,
S.
,
2017
, “
Dynamics of a Motorized Spindle Supported on Water-Lubricated Bearings
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
3
), pp.
459
472
.
25.
Geng
,
K.
, and
Lin
,
S.
,
2020
, “
Effect of Angular Misalignment on the Stiffness of the Double-Row Self-Aligning Ball Bearing
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
4
), pp.
946
962
.
26.
Prohl
,
M. A.
,
1945
, “
A General Method for Calculating Critical Speeds of Flexible Rotors
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
142
148
.
27.
Lin
,
S.
, and
Jiang
,
S.
,
2018
, “
Study of the Stiffness Matrix of Preloaded Duplex Angular Contact Ball Bearings
,”
ASME J. Tribol.
,
141
(
3
), p.
032204
.
28.
Lin
,
S. Y.
,
2020
, “
Study on the Rotor Dynamics of Face Machining Spindle with Different Types of Bearings
,”
Ph.D. thesis
,
Southeast University
,
Nanjing
(in Chinese).
29.
Jiang
,
S. Y.
, and
Mao
,
H. B.
,
2011
, “
Investigation of the High Speed Rolling Bearing Temperature Rise With Oil-Air Lubrication
,”
ASME J. Tribol.
,
133
(
2
), pp.
655
664
.
30.
Zhu
,
G. Z.
,
2019
, “
Thermal Characteristic Analysis of Machine Tool Spindles for Static Pressure and Rolling Hybrid Bearings
,”
MA.Sc.D. thesis
,
Southeast University
,
Nanjing
(in Chinese).
31.
Deng
,
R. T.
,
2018
, “
Design on end Face Grinder with Round Table for Ceramic Cell Phone Backplane
,”
MA.Sc. D. thesis
,
Hunan University
,
Changsha
. (in Chinese)
You do not currently have access to this content.