Abstract

Flow-related defects in friction stir welding are critical for the joints affecting their mechanical properties and functionality. One way to identify them, avoiding long and sometimes expensive destructive and nondestructive testing, is using machine learning tools with monitored physical quantities as input data. In this work, artificial neural network and decision tree models are trained, validated, and tested on a large dataset consisting of forces, torque, and temperature in the stirred zone measured when friction stir welding three aluminum alloys such as 5083-H111, 6082-T6, and 7075-T6. The built models successfully classified welds between sound and defective with accuracies over 95%, proving their usefulness in identifying defects on new datasets. Independently from the models, the temperature in the stirred zone is found to be the most influential parameter for the assessment of friction stir weld quality.

References

1.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J.
,
Murch
,
M. G.
,
Templesmith
,
P.
, and
Dawes
,
C. J.
,
1991
, “
Friction Stir Butt Welding
,” International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, Dec. 1991, U.S. Patent No. 5,460,317,Oct. 1995.
2.
Kumar Rajak
,
D.
,
Pagar
,
D. D.
,
Menezes
,
P. L.
, and
Eyvazian
,
A.
,
2020
, “
Friction-Based Welding Processes: Friction Welding and Friction Stir Welding
,”
J. Adhes. Sci. Technol.
,
34
(
24
), pp.
2613
2637
.
3.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R: Rep.
,
50
(
1–2
), pp.
1
78
.
4.
Huang
,
Y.
,
Meng
,
X.
,
Xie
,
Y.
,
Wan
,
LongLv
, and
Feng
,
J.
,
2018
, “
Friction Stir Welding/Processing of Polymers and Polymer Matrix Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
105
, pp.
235
257
.
5.
Lambiase
,
F.
,
Scipioni
,
S. I.
,
Lee
,
C.-J.
,
Ko
,
D.-C.
, and
Liu
,
F.
,
2021
, “
A State-of-the-Art Review on Advanced Joining Processes for Metal-Composite and Metal-Polymer Hybrid Structures
,”
Materials
,
14
(
8
), p.
1890
.
6.
Kashaev
,
N.
,
Ventzke
,
V.
, and
Çam
,
G.
,
2018
, “
Prospects of Laser Beam Welding and Friction Stir Welding Processes for Aluminum Airframe Structural Applications
,”
J. Manuf. Process.
,
36
, pp.
571
600
.
7.
Radisavljevic
,
I.
,
Zivkovic
,
A.
,
Radovic
,
N.
, and
Grabulov
,
V.
,
2013
, “
Influence of FSW Parameters on Formation Quality and Mechanical Properties of Al 2024-T351 Butt Welded Joints
,”
Trans. Nonferrous Metals Soc. China (English Edition)
,
23
(
12
), pp.
3525
3539
.
8.
Hartl
,
R.
,
Hansjakob
,
J.
, and
Zaeh
,
M. F.
,
2020
, “
Improving the Surface Quality of Friction Stir Welds Using Reinforcement Learning and Bayesian Optimization
,”
Int. J. Adv. Manuf. Technol.
,
110
(
11–12
), pp.
3145
3167
.
9.
Zeng
,
X. H.
,
Xue
,
P.
,
Wang
,
D.
,
Ni
,
D. R.
,
Xiao
,
B. L.
,
Wang
,
K. S.
, and
Ma
,
Z. Y.
,
2018
, “
Material Flow and Void Defect Formation in Friction Stir Welding of Aluminium Alloys
,”
Sci. Technol. Welding Joining
,
23
(
8
), pp.
677
686
.
10.
Beaudet
,
J.
,
Rückert
,
G.
, and
Cortial
,
F.
,
2020
, “
Fatigue Behavior of FSW High-Yield Strength Steel Welds for Shipbuilding Application
,”
Welding World
,
72
(
4
), pp.
407
420
.
11.
Ambrosio
,
D.
,
Wagner
,
V.
,
Garnier
,
C.
,
Jacquin
,
D.
,
Tongne
,
A.
,
Fazzini
,
M.
,
Cahuc
,
O.
, and
Dessein
,
G.
,
2020
, “
Influence of Welding Parameters on the Microstructure, Thermal Fields and Defect Formation in AA7075-T6 Friction Stir Welds
,”
Welding World
,
64
(
5
), pp.
773
784
.
12.
Wang
,
Z. L.
,
Zhang
,
Z.
,
Xue
,
P.
,
Ni
,
D. R.
,
Ma
,
Z. Y.
,
Hao
,
Y. F.
,
Zhao
,
Y. H.
, and
Wang
,
G. Q.
,
2022
, “
Defect Formation, Microstructure Evolution, and Mechanical Properties of Bobbin Tool Friction–Stir Welded 2219-T8 Alloy
,”
Mater. Sci. Eng. A.
,
832
, p.
142414
.
13.
Zettler
,
R.
,
Vugrin
,
T.
, and
Schmücker
,
M.
,
2010
,
9—Effects and Defects of Friction Stir Welds
,
Woodhead Publishing
,
Sawston, UK
, pp.
245
276
.
14.
Khan
,
N. Z.
,
Siddiquee
,
A. N.
,
Khan
,
Z. A.
, and
Shihab
,
S. K.
,
2015
, “
Investigations on Tunneling and Kissing Bond Defects in FSW Joints for Dissimilar Aluminum Alloys
,”
J. Alloys. Compd.
,
648
, pp.
360
367
.
15.
Kim
,
Y. G.
,
Fujii
,
H.
,
Tsumura
,
T.
,
Komazaki
,
T.
, and
Nakata
,
K.
,
2006
, “
Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy
,”
Mater. Sci. Eng. A.
,
415
(
1–2
), pp.
250
254
.
16.
Ambrosio
,
D.
,
Wagner
,
V.
,
Dessein
,
G.
,
Paris
,
J. Y.
,
Jlaiel
,
K.
, and
Cahuc
,
O.
,
2021
, “
Plastic Behavior-Dependent Weldability of Heat-Treatable Aluminum Alloys in Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
117
, pp.
635
652
.
17.
Sudhagar
,
S.
,
Sakthivel
,
M.
, and
Ganeshkumar
,
P.
,
2019
, “
Monitoring of Friction Stir Welding Based on Vision System Coupled With Machine Learning Algorithm
,”
Meas.: J. Int. Meas. Confed.
,
144
, pp.
135
143
.
18.
Rosado
,
L. S.
,
Santos
,
T. G.
,
Piedade
,
M.
,
Ramos
,
P. M.
, and
Vilaça
,
P.
,
2010
, “
Advanced Technique for Non-destructive Testing of Friction Stir Welding of Metals
,”
Measurement
,
43
(
8
), pp.
1021
1030
.
19.
Ambrosio
,
D.
,
Tongne
,
A.
,
Wagner
,
V.
,
Dessein
,
G.
, and
Cahuc
,
O.
,
2023
, “
Towards Material Flow Prediction in Friction Stir Welding Accounting for Mechanisms Governing Chip Formation in Orthogonal Cutting
,”
J. Manuf. Proces.
,
85
, pp.
450
465
.
20.
Guan
,
W.
,
Li
,
D.
,
Cui
,
L.
,
Wang
,
D.
,
Wu
,
S.
,
Kang
,
S.
,
Wang
,
J.
,
Mao
,
L.
, and
Zheng
,
X.
,
2021
, “
Detection of Tunnel Defects in Friction Stir Welded Aluminum Alloy Joints Based on the In-Situ Force Signal
,”
J. Manuf. Proces.
,
71
, pp.
1
11
.
21.
Franke
,
D.
,
Rudraraju
,
S.
,
Zinn
,
M.
, and
Pfefferkorn
,
F. E.
,
2020
, “
Understanding Process Force Transients With Application Towards Defect Detection During Friction Stir Welding of Aluminum Alloys
,”
J. Manuf. Proces.
,
54
, pp.
251
261
.
22.
Das
,
B.
,
Pal
,
S.
, and
Bag
,
S.
,
2017
, “
Torque Based Defect Detection and Weld Quality Modelling in Friction Stir Welding Process
,”
J. Manuf. Proces.
,
27
, pp.
8
17
.
23.
Das
,
B.
,
Pal
,
S.
, and
Swarup
,
B.
,
2014
, “
Monitoring of Friction Stir Welding Process Through Signals Acquired During the Welding
,”
All India Manufacturing Technology Design and Research (AIMTDR)
,
Guwahati, India
,
Dec. 12–14
, pp.
1
7
.
24.
Balachandar
,
K.
, and
Jegadeeshwaran
,
R.
,
2021
, “
Friction Stir Welding Tool Condition Monitoring Using Vibration Signals and Random Forest Algorithm—A Machine Learning Approach
,”
Mater. Today: Proc.
,
46
, pp.
1174
1180
.
25.
Ambrosio
,
D.
,
Dessein
,
G.
,
Wagner
,
V.
,
Yahiaoui
,
M.
,
Paris
,
J. Y.
,
Fazzini
,
M.
, and
Cahuc
,
O.
,
2022
, “
On the Potential Applications of Acoustic Emission in Friction Stir Welding
,”
J. Manuf. Process.
,
75
, pp.
461
475
.
26.
Ambrosio
,
D.
,
Aldanondo
,
E.
,
Wagner
,
V.
,
Dessein
,
G.
,
Garnier
,
C.
,
Vivas
,
J.
, and
Cahuc
,
O.
,
2022
, “
A Semi-empirical Model for Peak Temperature Estimation in Friction Stir Welding of Aluminium Alloys
,”
Sci. Technol. Welding Joining
,
27
(
7
), pp.
1
10
.
27.
Huggett
,
D. J.
,
Dewan
,
M. W.
,
Wahab
,
M. A.
,
Okeil
,
A.
, and
Liao
,
T. W.
,
2017
, “
Phased Array Ultrasonic Testing for Post-Weld and OnLine Detection of Friction Stir Welding Defects
,”
Res. Nondestructive Eval.
,
28
(
4
), pp.
187
210
.
28.
Doude
,
H.
,
Schneider
,
J.
,
Patton
,
B.
,
Stafford
,
S.
,
Waters
,
T.
, and
Varner
,
C.
,
2015
, “
Optimizing Weld Quality of a Friction Stir Welded Aluminum Alloy
,”
J. Mater. Process. Technol.
,
222
, pp.
188
196
.
29.
Chen
,
C.
,
Kovacevic
,
R.
, and
Jandgric
,
D.
,
2003
, “
Wavelet Transform Analysis of Acoustic Emission in Monitoring Friction Stir Welding of 6061 Aluminum
,”
Int. J. Mach. Tools. Manuf.
,
43
(
13
), pp.
1383
1390
.
30.
Eren
,
B.
,
Guvenc
,
M. A.
, and
Mistikoglu
,
S.
,
2021
, “
Artificial Intelligence Applications for Friction Stir Welding: A Review
,”
Metals Mater. Int.
,
27
(
2
), pp.
193
219
.
31.
Shanavas
,
S.
, and
Dhas
,
J. E. R.
,
2018
, “
Quality Prediction of Friction Stir Weld Joints on Aa 5052 H32 Aluminium Alloy Using Fuzzy Logic Technique
,”
Mater. Today: Proc.
,
5
(
5
), pp.
12124
12132
.
32.
Huggett
,
D. J.
,
Liao
,
T. W.
,
Wahab
,
M. A.
, and
Okeil
,
A.
,
2018
, “
Prediction of Friction Stir Weld Quality Without and With Signal Features
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
1989
2003
.
33.
Du
,
Y.
,
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2019
, “
Conditions for Void Formation in Friction Stir Welding From Machine Learning
,”
npj Comput. Mater.
,
5
(
1
), pp.
1
8
.
34.
Hartl
,
R.
,
Bachmann
,
A.
,
Habedank
,
J. B.
,
Semm
,
T.
, and
Zaeh
,
M. F.
,
2021
, “
Process Monitoring in Friction Stir Welding Using Convolutional Neural Networks
,”
Metals
,
11
(
4
), p.
535
.
35.
Nadeau
,
F.
,
Thériault
,
B.
, and
Gagné
,
M. O.
,
2020
, “
Machine Learning Models Applied to Friction Stir Welding Defect Index Using Multiple Joint Configurations and Alloys
,”
Proc. Inst. Mech. Eng. L P I Mech Eng L-J. Mat
,
234
(
5
), pp.
752
765
.
36.
Verma
,
S.
,
Gupta
,
M.
, and
Misra
,
J. P.
,
2018
, “
Performance Evaluation of Friction Stir Welding Using Machine Learning Approaches
,”
MethodsX
,
5
, pp.
1048
1058
.
37.
Rajiv
,
M. W. M.
, and
Mishra
,
S.
,
2007
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng.: R: Rep.
,
50
(
1–2
), pp.
1
78
.
38.
Kumar
,
K.
, and
Kailas
,
S. V.
,
2008
, “
The Role of Friction Stir Welding Tool on Material Flow and Weld Formation
,”
Mater. Sci. Eng. A.
,
485
(
1–2
), pp.
367
374
.
39.
Cao
,
X.
, and
Jahazi
,
M.
,
2009
, “
Effect of Welding Speed on the Quality of Friction Stir Welded Butt Joints of a Magnesium Alloy
,”
Mater. Des.
,
30
(
6
), pp.
2033
2042
.
40.
Rajakumar
,
S.
,
Muralidharan
,
C.
, and
Balasubramanian
,
V.
,
2011
, “
Influence of Friction Stir Welding Process and Tool Parameters on Strength Properties of AA7075-T6 Aluminium Alloy Joints
,”
Mater. Des.
,
32
(
2
), pp.
535
549
.
41.
Lombard
,
H.
,
Hattingh
,
D.
,
Steuwer
,
A.
, and
James
,
M.
,
2008
, “
Optimising FSW Process Parameters to Minimise Defects and Maximise Fatigue Life in 5083-h321 Aluminium Alloy
,”
Eng. Fract. Mech.
,
75
(
3
), pp.
341
354
.
42.
Imam
,
M.
,
Biswas
,
K.
, and
Racherla
,
V.
,
2013
, “
On Use of Weld Zone Temperatures for Online Monitoring of Weld Quality in Friction Stir Welding of Naturally Aged Aluminium Alloys
,”
Mater. Des.
,
52
, pp.
730
739
.
43.
Salari
,
E.
,
Jahazi
,
M.
,
Khodabandeh
,
A.
, and
Ghasemi-Nanesa
,
H.
,
2014
, “
Influence of Tool Geometry and Rotational Speed on Mechanical Properties and Defect Formation in Friction Stir Lap Welded 5456 Aluminum Alloy Sheets
,”
Mater. Des.
,
58
, pp.
381
389
.
44.
Upadhyay
,
P.
, and
Reynolds
,
A.
,
2012
, “
Effects of Forge Axis Force and Backing Plate Thermal Diffusivity on FSW of Aa6056
,”
Mater. Sci. Eng. A.
,
558
, pp.
394
402
.
45.
Mendes
,
N.
,
Neto
,
P.
,
Loureiro
,
A.
, and
Moreira
,
A. P.
,
2016
, “
Machines and Control Systems for Friction Stir Welding: A Review
,”
Mater. Des.
,
90
, pp.
256
265
.
46.
Gajowniczek
,
K.
,
Liang
,
Y.
,
Friedman
,
T.
, and
Zabkowski
,
T.
,
2020
, “
Semantic and Generalized Entropy Loss Functions for Semi-supervised Deep Learning
,”
Entropy
,
22
(
3
), p.
334
.
47.
Jenq
,
J. J. F.
, and
Li
,
W.
,
1998
, “
Feedforward Backpropagation Artificial Neural Networks on Reconfigurable Meshes
,”
Future Generation Comput. Syst.
,
14
(
5–6
), pp.
313
319
.
48.
Apicella
,
A.
,
Donnarumma
,
F.
,
Isgrò
,
F.
, and
Prevete
,
R.
,
2021
, “
A Survey on Modern Trainable Activation Functions
,”
Neural Netw.
,
138
, pp.
14
32
.
49.
Ding
,
B.
,
Qian
,
H.
, and
Zhou
,
J.
,
2018
, “
Activation Functions and Their Characteristics in Deep Neural Networks
,”
2018 Chinese Control And Decision Conference (CCDC)
,
Shenyang, China
,
June 9–11
, pp.
1836
1841
.
50.
Liao
,
S.
,
Jiang
,
X.
, and
Ge
,
Z.
,
2022
, “
Weakly Supervised Multilayer Perceptron for Industrial Fault Classification With Inaccurate and Incomplete Labels
,”
Trans. Autom. Sci. Eng.
,
19
(
2
), pp.
1192
1201
.
51.
Vijayalakshmi
,
K.
,
Vijayakumar
,
K.
, and
Nandhakumar
,
K.
,
2022
, “
Prediction of Virtual Energy Storage Capacity of the Air-Conditioner Using a Stochastic Gradient Descent Based Artificial Neural Network
,”
Electric Power Syst. Res.
,
208
, p.
107879
.
52.
Smith
,
S. L.
, and
Le
,
Q. V.
,
2018
, “
A Bayesian Perspective on Generalization and Stochastic Gradient Descent
,”
6th International Conference on Learning Representations, ICLR 2018
,
Vancouver Convention Center, Vancouver, BC, Canada
,
Apr. 30–May 3
, pp.
1
13
.
53.
Moreira
,
M.
, and
Fiesler
,
E.
,
1995
, “
Neural Networks with Adaptive Learning Rate and Momentum Terms
,” Technique Report 95-04, IDIAP Annual Reports, pp.
1
29
.
54.
Olden
,
J. D.
,
Joy
,
M. K.
, and
Death
,
R. G.
,
2004
, “
An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data
,”
Ecol. Modell.
,
178
(
3–4
), pp.
389
397
.
55.
Arbegast
,
W. J.
, and
Hartley
,
P. J.
,
1998
, “
Friction Stir Weld Technology Development at Lockheed Martin Michoud Space System—An Overview
,”
5th International Conference on Trends in Welding Research
,
Pine Mountain, GA
,
June 1–5
.
56.
Roy
,
G. G.
,
Nandan
,
R.
, and
DebRoy
,
T.
,
2006
, “
Dimensionless Correlation to Estimate Peak Temperature During Friction Stir Welding
,”
Sci. Technol. Welding Join.
,
11
(
5
), pp.
606
608
.
57.
Ambrosio
,
D.
,
Wagner
,
V.
,
Dessein
,
G.
,
Tongne
,
A.
,
Fazzini
,
M.
,
Garnier
,
C.
, and
Cahuc
,
O.
,
2022
, “
Power-Based Model for Temperature Prediction in FSW
,”
J. Phys.: Conference Ser.
,
2287
(
1
), p.
012025
.
58.
Kim
,
A.
,
Oh
,
K.
,
Jung
,
J. Y.
, and
Kim
,
B.
,
2018
, “
Imbalanced Classification of Manufacturing Quality Conditions Using Cost-Sensitive Decision Tree Ensembles
,”
Int. J. Comput. Integr. Manuf.
,
31
(
8
), pp.
701
717
.
59.
Yeh
,
D. Y.
,
Cheng
,
C. H.
, and
Hsiao
,
S. C.
,
2011
, “
Classification Knowledge Discovery in Mold Tooling Test Using Decision Tree Algorithm
,”
J. Intell. Manuf.
,
22
(
4
), pp.
585
595
.
60.
Zhao
,
Y.
, and
Zhang
,
Y.
,
2008
, “
Comparison of Decision Tree Methods for Finding Active Objects
,”
Adv. Space. Res.
,
41
(
12
), pp.
1955
1959
.
61.
Navada
,
A.
,
Ansari
,
A. N.
,
Patil
,
S.
, and
Sonkamble
,
B. A.
,
2011
, “
Overview of Use of Decision Tree Algorithms in Machine Learning
,”
2011 IEEE Control and System Graduate Research Colloquium
,
Shah Alam, Malaysia
,
June 27–28
, pp.
37
42
.
62.
Kim
,
K.
,
2016
, “
A Hybrid Classification Algorithm by Subspace Partitioning Through Semi-supervised Decision Tree
,”
Pattern Recogn.
,
60
, pp.
157
163
.
63.
Primartha
,
R.
, and
Tama
,
B. A.
,
2017
, “
Anomaly Detection Using Random Forest: A Performance Revisited
,”
2017 International Conference on Data and Software Engineering (ICoDSE)
,
Palembang, Indonesia
,
Nov. 1–2
, pp.
1
6
.
64.
Mohamed
,
W. N. H. W.
,
Salleh
,
M. N. M.
, and
Omar
,
A. H.
,
2012
, “
A Comparative Study of Reduced Error Pruning Method in Decision Tree Algorithms
,”
2012 IEEE International Conference on Control System, Computing and Engineering
,
Penang, Malaysia
,
Nov. 23–25
, pp.
392
397
.
You do not currently have access to this content.