Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The objective of this work is to study the ability of friction surfacing to deposit metal alloys that are difficult to process with traditional methods. Creep and neutron irradiation-resistant oxide dispersion strengthened (ODS) materials cannot be produced via the conventional casting route due to the insolubility of the oxidic and metallic alloy constituents, causing unintended inhomogeneous oxide dispersion and material behavior. Increasing the silicon content of iron–silicon (Fe–Si) improves electromagnetic properties but embrittles the material significantly, and fusion-based manufacturing methods are unable to process this steel. The solid-state nature of the friction surfacing process offers a potential alternative processing route to enable wider usage of difficult-to-process alloy systems. Both ODS and Fe–Si materials are available in powder forms. While the existing literature in friction surfacing focuses on depositing composites by incorporating small quantities of powders through holes in consumable rods, this is the first study showing that a large charge of powder can be converted to a homogeneous fully consolidated deposit in friction surfacing. A novel methodology is used that incorporates the high portion of powder feedstock into hollow consumable friction surfacing rods (up to 35% volume fraction). It was found that fully consolidated deposits can be produced with powder feedstocks using the proposed methodology. A recrystallized, homogeneous, equiaxed microstructure was observed in Fe–Si 6.8 wt% and a new-generation FeAlOY ODS alloy deposits processed with hollow stainless steel friction surfacing rods. Both powder and rod material plasticize and deposit without bulk intermixing.

References

1.
Gandra
,
J.
,
Krohn
,
H.
,
Miranda
,
R. M.
,
Vilaça
,
P.
,
Quintino
,
L.
, and
dos Santos
,
J. F.
,
2014
, “
Friction Surfacing—A Review
,”
J. Mater. Process. Technol.
,
214
(
5
), pp.
1062
1093
.
2.
Soujon
,
M.
,
Kallien
,
Z.
,
Roos
,
A.
,
Zeller-Plumhoff
,
B.
, and
Klusemann
,
B.
,
2022
, “
Fundamental Study of Multi-Track Friction Surfacing Deposits for Dissimilar Aluminum Alloys With Application to Additive Manufacturing
,”
Mater. Des.
,
219
, p.
110786
.
3.
Agiwal
,
H.
,
Baumann
,
C.
,
Krall
,
S.
,
Yeom
,
H.
,
Sridharan
,
K.
,
Bleicher
,
F.
, and
Pfefferkorn
,
F. E.
,
2023
, “
Towards Multilayered Coatings of 304L Stainless Steels Using Friction Surfacing
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011001
.
4.
Krall
,
S.
,
Baumann
,
C.
,
Agiwal
,
H.
,
Bleicher
,
F.
, and
Pfefferkorn
,
F.
,
2022
, “
Investigation of Multilayer Coating of EN AW 6060—T66 Using Friction Surfacing
,”
J. Mach. Eng.
,
22
(
3
), pp.
44
58
.
5.
Dilip
,
J. J. S.
,
Babu
,
S.
,
Rajan
,
S. V.
,
Rafi
,
K. H.
,
Ram
,
G. D. J.
, and
Stucker
,
B. E.
,
2013
, “
Use of Friction Surfacing for Additive Manufacturing
,”
Mater. Manuf. Processes
,
28
(
2
), pp.
189
194
.
6.
Seidi
,
E.
, and
Miller
,
S. F.
,
2021
, “
Lateral Friction Surfacing: Experimental and Metallurgical Analysis of Different Aluminum Alloy Depositions
,”
J. Mater. Res. Technol.
,
15
, pp.
5948
5967
.
7.
Dong
,
H.
,
Li
,
X.
,
Xu
,
K.
,
Zang
,
Z.
,
Liu
,
X.
,
Zhang
,
Z.
,
Xiao
,
W.
, and
Li
,
Y.
,
2022
, “
A Review on Solid-State-Based Additive Friction Stir Deposition
,”
Aerospace
,
9
(
10
), p.
565
.
8.
Reddy
,
G. M.
,
Rao
,
K. S.
, and
Mohandas
,
T.
,
2009
, “
Friction Surfacing: Novel Technique for Metal Matrix Composite Coating on Aluminium–Silicon Alloy
,”
Surf. Eng.
,
25
(
1
), pp.
25
30
.
9.
Gandra
,
J.
,
Vigarinho
,
P.
,
Pereira
,
D.
,
Miranda
,
R. M.
,
Velhinho
,
A.
, and
Vilaça
,
P.
,
2013
, “
Wear Characterization of Functionally Graded Al–SiC Composite Coatings Produced by Friction Surfacing
,”
Mater. Des.
,
52
, pp.
373
383
.
10.
Karthik
,
G. M.
,
Ram
,
G. D. J.
, and
Kottada
,
R. S.
,
2016
, “
Friction Deposition of Titanium Particle Reinforced Aluminum Matrix Composites
,”
Mater. Sci. Eng. A
,
653
, pp.
71
83
.
11.
Oliveira
,
P. H. F.
,
Galvis
,
J. C.
,
Martins
,
J. D. P.
, and
Carvalho
,
A. L. M.
,
2017
, “
Application of Friction Surfacing to the Production of Aluminum Coatings Reinforced With Al2O3 Particles
,”
Mater. Res.
,
20
(
suppl 2
), pp.
603
620
.
12.
Guo
,
D.
,
Kwok
,
C. T.
, and
Chan
,
S. L. I.
,
2018
, “
Fabrication of Stainless Steel 316L/TiB2 Composite Coating via Friction Surfacing
,”
Surf. Coat. Technol.
,
350
, pp.
936
948
.
13.
Bararpour
,
S. M.
,
Jamshidi Aval
,
H.
, and
Jamaati
,
R.
,
2019
, “
Mechanical Alloying by Friction Surfacing Process
,”
Mater. Lett.
,
254
, pp.
394
397
.
14.
Bararpour
,
S. M.
,
Jamshidi Aval
,
H.
, and
Jamaati
,
R.
,
2020
, “
Effects of Zn Powder on Alloying During Friction Surfacing of Al–Mg Alloy
,”
J. Alloys Compd.
,
818
, p.
152823
.
15.
Bararpour
,
S. M.
,
Jamshidi Aval
,
H.
, and
Jamaati
,
R.
,
2020
, “
Effect of Non-Isothermal Aging on Microstructure and Mechanical Properties of Friction Surfaced AA5083-15wt%Zn Composites
,”
Surf. Coat. Technol.
,
384
, p.
125307
.
16.
Pirhayati
,
P.
, and
Jamshidi Aval
,
H.
,
2019
, “
Effect of Silver on Non-Isothermal Aging of Friction Surfaced AA2024-16 wt%Ag Composites
,”
Surf. Coat. Technol.
,
379
, p.
125059
.
17.
Özler
,
L.
,
Tosun
,
G.
, and
Özcan
,
M. E.
,
2020
, “
Influence of B4C Powder Reinforcement on Coating Structure, Microhardness and Wear in Friction Surfacing
,”
Mater. Manuf. Processes
,
35
(
10
), pp.
1135
1145
.
18.
Sharma
,
A.
,
Sagar
,
S.
,
Mahto
,
R. P.
,
Sahoo
,
B.
,
Pal
,
S. K.
, and
Paul
,
J.
,
2018
, “
Surface Modification of Al6061 by Graphene Impregnation Through a Powder Metallurgy Assisted Friction Surfacing
,”
Surf. Coat. Technol.
,
337
, pp.
12
23
.
19.
Deshpande
,
A.
,
Agiwal
,
H.
,
Baumann
,
C.
,
Krall
,
S.
,
Bleicher
,
F.
, and
Pfefferkorn
,
F. E.
,
2023
, “
Recycling Metal Cutting Chips Into a Consolidated Deposition With Friction Surfacing
,”
Manuf. Lett.
,
35
, pp.
743
749
.
20.
MELD Brochure
,
2018
, “Aeroprobe Corporation,” http://www.aeroprobe.com/meld/464.
21.
Chaudhary
,
B.
,
Jain
,
N. K.
, and
Murugesan
,
J.
,
2022
, “
Development of Friction Stir Powder Deposition Process for Repairing of Aerospace-Grade Aluminum Alloys
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
252
267
.
22.
Mukhopadhyay
,
A.
, and
Saha
,
P.
,
2020
, “
Mechanical and Microstructural Characterization of Aluminium Powder Deposit Made by Friction Stir Based Additive Manufacturing
,”
J. Mater. Process. Technol.
,
281
, p.
116648
.
23.
Griffiths
,
R. J.
,
Perry
,
M. E. J.
,
Sietins
,
J. M.
,
Zhu
,
Y.
,
Hardwick
,
N.
,
Cox
,
C. D.
,
Rauch
,
H. A.
, and
Yu
,
H. Z
,
2019
, “
A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD
,”
J. Mater. Eng. Perform.
,
28
(
2
), pp.
648
656
.
24.
Garcia
,
D.
,
Griffiths
,
R. J.
, and
Yu
,
H. Z.
,
2021
, “
Additive Friction Stir Deposition for Fabrication of Silicon Carbide Metal Matrix Composites
,”
Presented at the ASME 2020 15th International Manufacturing Science and Engineering Conference
,
Virtual, Online
,
Sept. 3
,
ASME, p. V001T01A013.
25.
Yu
,
H. Z.
,
2022
,
Additive Friction Stir Deposition
,
Elsevier
,
New York
.
26.
Agrawal
,
P.
,
Haridas
,
R. S.
,
Yadav
,
S.
,
Thapliyal
,
S.
,
Gaddam
,
S.
,
Verma
,
R.
, and
Mishra
,
R. S.
,
2021
, “
Processing-Structure-Property Correlation in Additive Friction Stir Deposited Ti-6Al-4 V Alloy From Recycled Metal Chips
,”
Addit. Manuf.
,
47
, p.
102259
.
27.
Yoder
,
J. K.
,
Hahn
,
G. D.
,
Zhao
,
N.
,
Brennan
,
R. E.
,
Cho
,
K.
, and
Yu
,
H. Z.
,
2023
, “
Additive Friction Stir Deposition-Enabled Upcycling of Automotive Cast Aluminum Chips
,”
Addit. Manuf. Lett.
,
4
, p.
100108
.
28.
Mayer
,
M.
,
Ressel
,
G.
, and
Svoboda
,
J.
,
2022
, “
The Effect of Cryogenic Mechanical Alloying and Milling Duration on Powder Particles' Microstructure of an Oxide Dispersion Strengthened FeCrMnNiCo High-Entropy Alloy
,”
Metall. Mater. Trans. A
,
53
(
2
), pp.
573
584
.
29.
El-Genk
,
M. S.
, and
Tournier
,
J.-M.
,
2005
, “
A Review of Refractory Metal Alloys and Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Space Nuclear Power Systems
,”
J. Nucl. Mater.
,
340
(
1
), pp.
93
112
.
30.
Mayer
,
M.
,
Svoboda
,
J.
,
Mendez-Martin
,
F.
,
Fellner
,
S.
,
Gammer
,
C.
,
Razumovskiy
,
V.
,
Resch
,
L.
, et al
,
2023
, “
From Microscopic to Atomistic Scale: Temperature Effect on Yttria Distribution in Mechanically Alloyed FeCrMnNiCo Powder Particles
,”
J. Alloys Compd.
,
968
, p.
171850
.
31.
Wilms
,
M. B.
,
Rittinghaus
,
S.-K.
,
Goßling
,
M.
, and
Gökce
,
B.
,
2023
, “
Additive Manufacturing of Oxide-Dispersion Strengthened Alloys: Materials, Synthesis and Manufacturing
,”
Prog. Mater. Sci.
,
133
, p.
101049
.
32.
Ghayoor
,
M.
,
Lee
,
K.
,
He
,
Y.
,
Chang
,
C.
,
Paul
,
B. K.
, and
Pasebani
,
S.
,
2020
, “
Selective Laser Melting of Austenitic Oxide Dispersion Strengthened Steel: Processing, Microstructural Evolution and Strengthening Mechanisms
,”
Mater. Sci. Eng. A
,
788
, p.
139532
.
33.
Dymáček
,
P.
,
Kocich
,
R.
,
Kunčická
,
L.
,
Jarý
,
M.
,
Luptáková
,
N.
,
Holzer
,
J.
,
Mašek
,
B.
, and
Svoboda
,
J.
,
2022
, “
Processing of Top Creep and Oxidation Resistant Fe-Al Based ODS Alloys
,”
Procedia Struct. Integrity
,
42
, pp.
1576
1583
.
34.
Svoboda
,
J.
,
Bořil
,
P.
,
Holzer
,
J.
,
Luptáková
,
N.
,
Jarý
,
M.
,
Mašek
,
B.
, and
Dymáček
,
P.
,
2022
, “
Substantial Improvement of High Temperature Strength of New-Generation Nano-Oxide-Strengthened Alloys by Addition of Metallic Yttrium
,”
Materials
,
15
(
2
), p.
504
.
35.
Ouyang
,
G.
,
Chen
,
X.
,
Liang
,
Y.
,
Macziewski
,
C.
, and
Cui
,
J.
,
2019
, “
Review of Fe-6.5 wt%Si High Silicon Steel—A Promising Soft Magnetic Material for sub-kHz Application
,”
J. Magn. Magn. Mater.
,
481
, pp.
234
250
.
36.
Rodriguez-Vargas
,
B. R.
,
Stornelli
,
G.
,
Folgarait
,
P.
,
Ridolfi
,
M. R.
,
Miranda Pérez
,
A. F.
, and
Di Schino
,
A.
,
2023
, “
Recent Advances in Additive Manufacturing of Soft Magnetic Materials: A Review
,”
Materials
,
16
(
16
), p.
16
.
37.
Stornelli
,
G.
,
Faba
,
A.
,
Di Schino
,
A.
,
Folgarait
,
P.
,
Ridolfi
,
M. R.
,
Cardelli
,
E.
, and
Montanari
,
R.
,
2021
, “
Properties of Additively Manufactured Electric Steel Powder Cores With Increased Si Content
,”
Materials
,
14
(
6
), p.
1489
.
38.
Goodall
,
A. D.
,
Nishanth
,
F.
,
Severson
,
E. L.
, and
Todd
,
I.
,
2023
, “
Loss Performance of an Additively Manufactured Axial Flux Machine Stator With an Eddy-Current Limiting Structure
,”
Mater. Today Commun.
,
35
, p.
105978
.
39.
Fu
,
H.
,
Zhang
,
Z.
,
Yang
,
Q.
, and
Xie
,
J.
,
2011
, “
Strain-Softening Behavior of an Fe–6.5 wt%Si Alloy During Warm Deformation and Its Applications
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1391
1395
.
40.
Svoboda
,
J.
,
Gamanov
,
Š.
,
Bártková
,
D.
,
Luptáková
,
N.
,
Bořil
,
P.
,
Jarý
,
M.
,
Mašek
,
B.
,
Holzer
,
J.
, and
Dymáček
,
P.
,
2022
, “
The Optimization of Mechanical Alloying Conditions of Powder for the Preparation of a Fe-10Al-4Cr-4Y2O3 ODS Nanocomposite
,”
Materials
,
15
(
24
), p.
9034
.
41.
Bedford
,
G. M.
,
Vitanov
,
V. I.
, and
Voutchkov
,
I. I.
,
2001
, “
On the Thermo-Mechanical Events During Friction Surfacing of High Speed Steels
,”
Surf. Coat. Technol.
,
141
(
1
), pp.
34
39
.
42.
Fukakusa
,
K.
,
1996
, “
On the Characteristics of the Rotational Contact Plane - A Fundamental Study of Friction Surfacing
,”
Weld. Int.
,
10
(
7
), pp.
524
529
.
43.
Lienert
,
T.
,
Siewert
,
T.
,
Babu
,
S.
, and
Acoff
,
V.
,
2011
, “Solid-State Welding Processes: Friction Surfacing,”
ASM Handbook, Vol. 6A: Welding Fundamentals and Processes
,
T.
Lienert
,
T.
Siewert
,
S.
Babu
, and
V.
Acoff
, eds.,
ASM International
,
Materials Park, OH
, pp.
171
178
.
44.
Khalid Rafi
,
H.
,
Kishore Babu
,
N.
,
Phanikumar
,
G.
, and
Prasad Rao
,
K.
,
2013
, “
Microstructural Evolution During Friction Surfacing of Austenitic Stainless Steel AISI 304 on Low Carbon Steel
,”
Metall. Mater. Trans. A
,
44
(
1
), pp.
345
350
.
45.
Khalid Rafi
,
H.
,
Balasubramaniam
,
K.
,
Phanikumar
,
G.
, and
Prasad Rao
,
K.
,
2011
, “
Thermal Profiling Using Infrared Thermography in Friction Surfacing
,”
Metall. Mater. Trans. A
,
42
(
11
), pp.
3425
3429
.
46.
Huang
,
K.
, and
Logé
,
R. E.
,
2016
, “
A Review of Dynamic Recrystallization Phenomena in Metallic Materials
,”
Mater. Des.
,
111
, pp.
548
574
.
47.
Pfefferkorn
,
F.
,
Deshpande
,
A.
,
Faue
,
P.
,
Baumann
,
C.
,
Bleicher
,
F.
,
Mayer
,
M.
, and
Ressel
,
G.
,
2024
, “
Fully Consolidated Deposits From Oxide Dispersion Strengthened and Silicon Steel Powders Via Friction Surfacing
,”
Mendeley Data
,
V2
.
You do not currently have access to this content.