Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Dimensional tolerances for high-speed-machined aluminum products continue to tighten due to the demand for automated assembly of complex monolithic parts in aerospace and other industries. Understanding the contribution of inherent residual stress in wrought Al 7050-T7451 plate, common in aircraft manufacture, to distortion of high-aspect-ratio machined parts is critical but remains problematic due to the alloy's low residual stress magnitude over large geometries. Prior investigations into residual stress effects on machined part distortion suffer inadequate characterizations of the wrought material stress field, either because of low fidelity due to “slitting” methods, confounding effects in machined-layer removal methods, or small sample size when using neutron diffraction (ND). In this work, inherent residual stress is measured via ND at 860 locations in a 90.5 mm thick Al 7050-T7451 plate having dimensions 399 mm in the rolling direction and 335 mm in the transverse direction. Unlike prior studies, the ND residual stress is reconstructed using an iterative algorithm to ensure fully compatible, equilibrated 3D field prior to examining its effect on distortion. The findings from simulations and experiments show that inherent residual stress alone could distort a high-aspect-ratio part beyond aerospace industry requirements, that slitting measurements may not sufficiently characterize residual stress for predicted distortion, and that parts machined from different plate thickness locations could exhibit reversed distortion patterns. Thus, research into distortion prediction that considers machining should carefully characterize and reconstruct inherent residual stress so that the coupled machining effects are accurately modeled.

References

1.
Brinksmeier
,
E.
,
Cammett
,
J. T.
,
König
,
W.
,
Leskovar
,
P.
,
Peters
,
J.
, and
Tönshoff
,
H. K.
,
1982
, “
Residual Stresses—Measurement and Causes in Machining Processes
,”
Ann. CIRP
,
31
(
2
), pp.
491
510
.
2.
Aurrekoetxea
,
M.
,
Norberto López de Lacalle
,
L.
, and
Llanos
,
I.
,
2020
, “
Machining Stresses and Initial Geometry on Bulk Residual Stresses Characterization by On-Machine Layer Removal
,”
Materials
,
13
(
6
), p.
1445
.
3.
Aurrekoetxea
,
M.
,
Llanos
,
I.
,
Zelaieta
,
O.
, and
Norberto López de Lacalle
,
L.
,
2021
, “
Improving Accuracy of Bulk Residual Stress Characterization in Ribbed Geometries Through Equivalent Bending Stiffness
,”
Procedia CIRP
,
102
, pp.
325
330
.
4.
Li
,
J.
, and
Wang
,
S.
,
2016
, “
Distortion Caused by Residual Stresses in Machining Aeronautical Aluminum Alloy Parts: Recent Advances
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
997
1012
.
5.
Sim
,
W.
,
2010
, “
Challenges of Residual Stress and Part Distortion in the Civil Airframe Industry
,”
Int. J. Microstruct. Mater. Prop.
,
5
(
4–5
), pp.
446
455
.
6.
Garcia
,
C.
,
Lotz
,
T.
,
Martinez
,
M.
,
Artemev
,
A.
,
Alderliesten
,
R.
, and
Benedictus
,
R.
,
2016
, “
Fatigue Crack Growth in Residual Stress Fields
,”
Int. J. Fatigue
,
87
, pp.
326
338
.
7.
Weber
,
D.
,
Kirsch
,
B.
,
Jonsson
,
J.
,
D’Elia
,
C.
,
Linke
,
B.
,
Hill
,
M.
, and
Aurich
,
J.
,
2022
, “
Simulation Based Compensation Techniques to Minimize Distortion of Thin-Walled Monolithic Aluminum Parts Due to Residual Stresses
,”
J. Manuf. Sci. Technol.
,
38
, pp.
427
441
.
8.
Finnie
,
I.
, and
Cheng
,
W.
,
1993
, “
Measurement of Residual Stress Distributions Near the Toe of a Plate Using the Crack Compliance Method
,”
Eng. Fract. Mech.
,
46
(
1
), pp.
79
91
.
9.
Prime
,
M.
, and
Hill
,
M.
,
2005
, “
Uncertainty, Model Error, and Order Selection for Series-Expanded, Residual-Stress Inverse Solutions
,”
ASME J. Eng. Mater. Technol.
,
128
(
2
), pp.
175
185
.
10.
Strydom
,
W.
,
Venter
,
A.
,
Franklyn
,
C.
, and
de Beer
,
F.
,
2002
, “
The Role of Safari-1 in Industry and Academia
,”
Phys. Scr.
,
2002
(
T97
), p.
45
.
11.
Venter
,
A.
,
Marais
,
D.
, and
Luzin
,
V.
,
2016
, “
Benchmarking Studies of the MPISI Material Science Diffractometer at SAFARI-1
,”
Mater. Res. Proc.
,
2
, pp.
413
418
.
12.
Venter
,
A.
,
van Heerden
,
P.
,
Marais
,
D.
, and
Raaths
,
J.
,
2018
, “
MPISI: The Neutron Strain Scanner Materials Probe for Internal Strain Investigations at the SAFARI-1 Research Reactor
,”
Physica B
,
551
, pp.
417
421
.
13.
Jeanmart
,
P.
, and
Bouvaist
,
J.
,
1985
, “
Finite Element Calculation and Measurement of Thermal Stresses in Quenched Plates of High–Strength 7075 Aluminium Alloy
,”
Mater. Sci. Technol.
,
1
(
10
), pp.
765
769
.
14.
Tandon
,
R.
, and
Green
,
D. J.
,
1990
, “
Residual Stress Determination Using Strain Gage Measurements
,”
J. Am. Ceram. Soc.
,
73
(
9
), pp.
2628
2633
.
15.
Virkar
,
A. V.
,
1990
, “
Determination of Residual Stress Profile Using a Strain Gage Technique
,”
J. Am. Ceram. Soc.
,
73
(
7
), pp.
2100
2102
.
16.
Prime
,
M.
, and
Hill
,
M.
,
2002
, “
Residual Stress, Stress Relief, and Inhomogeneity in Aluminum Plate
,”
Scr. Mater.
,
46
(
1
), pp.
77
82
.
17.
Schajer
,
G.
, and
Prime
,
M.
,
2006
, “
Use of Inverse Solutions for Residual Stress Measurements
,”
ASME J. Eng. Mater. Technol.
,
128
(
3
), pp.
375
382
.
18.
Lee
,
M.
, and
Hill
,
M.
,
2007
, “
Effect of Strain Gage Length When Determining Residual Stress by Slitting
,”
ASME J. Eng. Mater. Technol.
,
129
(
1
), pp.
143
150
.
19.
Tang
,
Z.
,
Liu
,
Z.-Q.
,
Ai
,
X.
, and
Wan
,
Y.
,
2007
, “
Measuring Residual Stresses Depth Profile in Pre-Stretched Aluminum Alloy Plate Using Crack Compliance Method
,”
Chin. J. Nonferrous Met.
,
17
(
9
), p.
1404
.
20.
Aydiner
,
C.
, and
Prime
,
M.
,
2013
, “
Three-Dimensional Constraint Effects on the Slitting Method for Measuring Residual Stress
,”
ASME J. Eng. Mater. Technol.
,
135
(
3
), p.
031006
.
21.
Woo
,
W.
,
An
,
G.
,
Kingston
,
E.
,
DeWald
,
A.
,
Smith
,
D.
, and
Hill
,
M.
,
2013
, “
Through-Thickness Distributions of Residual Stresses in Two Extreme Heat-Input Thick Welds: A Neutron Diffraction, Contour Method and Deep Hole Drilling Study
,”
Acta Mater.
,
61
(
10
), pp.
3564
3574
.
22.
Wang
,
Z.
,
Denlinger
,
E.
,
Michaleris
,
P.
,
Stoica
,
A.
,
Ma
,
D.
, and
Beese
,
A.
,
2017
, “
Residual Stress Mapping in Inconel 625 Fabricated Through Additive Manufacturing: Method for Neutron Diffraction Measurements to Validate Thermomechanical Model Predictions
,”
Mater. Des.
,
113
, pp.
169
177
.
23.
Denkena
,
B.
,
Boehnke
,
D.
, and
de Leon
,
L.
,
2008
, “
Machining Induced Residual Stress in Structural Aluminum Parts
,”
Prod. Eng.
,
2
(
3
), pp.
247
253
.
24.
Chatelain
,
F.
,
Lalonde
,
J.
, and
Tahan
,
A.
,
2011
, “
A Comparison of the Distortion of Machined Parts Resulting From Residual Stresses Within Workpieces
,”
Proceedings of the 4th International Conference on Manufacturing Engineering, Quality and Production Systems (MEQAPS’11)
,
Barcelona, Spain
,
Sept. 15–17
, pp.
79
84
.
25.
Huang
,
X.
,
Sun
,
J.
,
Li
,
J.
,
Han
,
X.
, and
Xiong
,
Q.
,
2013
, “
An Experimental Investigation of Residual Stresses in High-Speed End Milling 7050-T7451 Aluminum Alloy
,”
Adv. Mech. Eng.
,
5
, pp.
592
659
.
26.
Huang
,
X.
,
Sun
,
J.
, and
Li
,
J.
,
2015
, “
Finite Element Simulation and Experimental Investigation on the Residual Stress-Related Monolithic Component Deformation
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
1035
1041
.
27.
Li
,
B.
,
Jiang
,
X.
,
Yang
,
J.
, and
Liang
,
S.
,
2015
, “
Effects of Depth of Cut on the Redistribution of Residual Stress and Distortion During the Milling of Thin-Walled Part
,”
J. Mater. Process. Technol.
,
216
, pp.
223
233
.
28.
Cerutti
,
X.
, and
Mocellin
,
K.
,
2016
, “
Influence of the Machining Sequence on the Residual Stress Redistribution and Machining Quality: Analysis and Improvement Using Numerical Simulations
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
489
503
.
29.
Gao
,
H.
,
Zhang
,
Y.
,
Wu
,
Q.
, and
Li
,
B.
,
2018
, “
Investigation on Influences of Initial Residual Stress on Thin-Walled Part Machining Deformation Based on a Semi-Analytical Model
,”
J. Mater. Process. Technol.
,
262
, pp.
437
448
.
30.
Ma
,
Y.
,
Zhang
,
J.
,
Yu
,
D.
,
Feng
,
P.
, and
Xu
,
C.
,
2019
, “
Modeling of Machining Distortion for Thin-Walled Components Based on the Internal Stress Field Evolution
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9–12
), pp.
3597
3612
.
31.
Yang
,
Y.
,
Li
,
X.
,
Li
,
L.
,
He
,
N.
,
Zhao
,
G.
,
Chen
,
N.
,
Lan
,
H.
, and
Zhou
,
Z.
,
2019
, “
Investigation on Deformation of Single-Sided Stringer Parts Based on Fluctuant Initial Residual Stress
,”
J. Mater. Process. Technol.
,
271
, pp.
623
633
.
32.
Wang
,
Z.
,
Sun
,
J.
,
Liu
,
L.
,
Wang
,
R.
, and
Chen
,
W.
,
2019
, “
An Analytical Model to Predict the Machining Deformation of Frame Parts Caused by Residual Stress
,”
J. Mater. Process. Technol.
,
274
, pp.
1162
1182
.
33.
Llanos
,
I.
,
Aurrekoetxea
,
M.
,
Agirre
,
A.
,
de Lacalle L
,
L.
, and
Zelaieta
,
O.
,
2019
, “
On-Machine Characterization of Bulk Residual Stresses on Machining Blanks
,”
Procedia CIRP
,
82
, pp.
406
410
.
34.
Barcenas
,
L.
,
Ledesma-Orozco
,
E.
,
Van-der Veen
,
S.
,
Reveles-Arredondo
,
F.
, and
Rodríguez-Sánchez
,
E.
,
2020
, “
An Optimization of Part Distortion for a Structural Aircraft Wing Rib: An Industrial Workflow Approach
,”
CIRP J. Manuf. Sci. Technol.
,
28
, pp.
15
23
.
35.
Casuso
,
M.
,
Polvorosa
,
R.
,
Veiga
,
F.
,
Suárez
,
A.
, and
Lamikiz
,
A.
,
2020
, “
Residual Stress and Distortion Modeling on Aeronautical Aluminum Alloy Parts for Machining Sequence Optimization
,”
Int. J. Adv. Manuf. Technol.
,
110
, pp.
1219
1232
.
36.
Fan
,
L.
,
Tian
,
H.
,
Li
,
L.
,
Yang
,
Y.
,
Zhou
,
N.
, and
He
,
N.
,
2020
, “
Machining Distortion Minimization of Monolithic Aircraft Parts Based on the Energy Principle
,”
Metals
,
10
(
12
), p.
1586
.
37.
Taraphdar
,
P.
,
Thakare
,
J.
,
Pandey
,
C.
, and
Mahapatra
,
M.
,
2020
, “
Novel Residual Stress Measurement Technique to Evaluate Through Thickness Residual Stress Fields
,”
Mater. Lett.
,
277
, p.
128347
.
38.
Yang
,
Y.
,
Fan
,
L.
,
Li
,
L.
,
Zhao
,
G.
,
Han
,
N.
,
Li
,
X.
,
Tian
,
H.
, and
He
,
N.
,
2020
, “
Aircraft Monolithic Part, Distortion, Initial Residual Stress, Material Removal Sequence, Strain Energy
,”
Chin. J. Aeronaut.
,
33
(
10
), pp.
2770
2781
.
39.
Fu
,
S.
,
Feng
,
P.
,
Ma
,
Y.
, and
Wang
,
L.
,
2020
, “
Initial Residual Stress Measurement Based on Piecewise Calculation Methods for Predicting Machining Deformation of Aeronautical Monolithic Components
,”
Int. J. Adv. Manuf. Technol.
,
108
(
7–8
), pp.
2063
2078
.
40.
Li
,
X.
,
Yang
,
Y.
,
Li
,
L.
,
Zhao
,
G.
, and
He
,
N.
,
2020
, “
Uncertainty Quantification in Machining Deformation Based on Bayesian Network
,”
Reliab. Eng. Syst. Saf.
,
203
, pp.
107
113
.
41.
Landwehr
,
S.
,
Schmid
,
V.
,
Holla
,
P.
,
Ganser
,
T.
,
Bergs
,
M.
,
Ruess
,
K.
, and
Schröder
,
U.
,
2021
, “
The Finite Cell Method for the Prediction of Machining Distortion Caused by Initial Residual Stresses in Milling
,”
Procedia CIRP
,
102
, pp.
144
149
.
42.
Fan
,
L.
,
Li
,
L.
,
Yang
,
Y.
,
Zhao
,
G.
,
Han
,
N.
,
Tian
,
H.
, and
He
,
N.
,
2021
, “
Control of Machining Distortion Stability in Machining of Monolithic Aircraft Parts
,”
Int. J. Adv. Manuf. Technol.
,
112
(
11–12
), pp.
3189
3199
.
43.
Chighizola
,
C.
, and
Hill
,
M.
,
2021
, “
Two-Dimensional Mapping of Bulk Residual Stress Using Cut Mouth Opening Displacement
,”
Exp. Mech.
,
62
(
1
), pp.
75
86
.
44.
Sunny
,
S.
,
Gleason
,
G.
,
Bailey
,
K.
,
Mathews
,
R.
, and
Malik
,
A.
,
2021
, “
Importance of Microstructure Modeling for Additively Manufactured Metal Post-Process Simulations
,”
Int. J. Eng. Sci.
,
166
, p.
103515
.
45.
Sunny
,
S.
,
Mathews
,
R.
,
Yu
,
H.
, and
Malik
,
A.
,
2022
, “
Effects of Microstructure and Inherent Stress on Residual Stress Induced During Powder Bed Fusion With Roller Burnishing
,”
Int. J. Mech. Sci.
,
219
, p.
107092
.
46.
Marais
,
D.
,
Seger
,
M.
,
Malik
,
A.
, and
Venter
,
A.
, “
Residual Stress in a Thick Al 7050-T7451 Plate
,”
10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MACASENS 2021
,
Prague, Czech Republic
,
Nov. 25–28
.
47.
Quin
,
X.
,
Yao
,
Z.
,
Cao
,
Y.
, and
Lu
,
J.
,
2004
, “
An Inverse Approach for Constructing Residual Stress Using Beam
,”
Eng. Anal. Boundary Elem.
,
28
(
3
), pp.
205
211
.
48.
Korsunsky
,
A.
,
2008
, “
Eigenstrain Analysis of Residual Strains and Stresses
,”
J. Strain Anal. Eng. Des.
,
44
(
1
), pp.
29
43
.
49.
Song
,
X.
, and
Korsunsky
,
A.
,
2011
, “
Fully two-Dimensional Discrete Inverse Eigenstrain Analysis of Residual Stresses in a Railway Rail Head
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031019
.
50.
Farrahi
,
G.
,
Faghidian
,
S.
, and
Smith
,
D.
,
2009
, “
An Inverse Approach to Determination of Residual Stresses Induced by Shot Peening in Round Bars
,”
Int. J. Mech. Sci.
,
51
(
9–10
), pp.
726
731
.
51.
Farrahi
,
G.
,
Faghidian
,
S.
, and
Smith
,
D.
,
2009
, “
Reconstruction of Residual Stresses in Autofrettaged Thick-Walled Tubes From Limited Measurements
,”
Int. J. Press. Vessels Pip.
,
86
(
11
), pp.
777
784
.
52.
Farrahi
,
G.
,
Faghidian
,
S.
, and
Smith
,
D.
,
2009
, “
A New Analytical Approach to Reconstruct Residual Stresses Due to Turning Process
,”
Proc. World Acad. Sci. Eng. Technol.
,
55
, pp.
453
457
.
53.
Farrahi
,
G.
,
Faghidian
,
S.
, and
Smith
,
D.
,
2010
, “
An Inverse Method for Reconstruction of the Residual Stress Field in Welded Plates
,”
ASME J. Pressure Vessel Technol.
,
132
(
6
), p.
061205
.
54.
Faghidian
,
S.
,
2014
, “
A Smoothed Inverse Eigenstrain Method for Reconstruction of the Regularized Residual Fields
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4427
4434
.
55.
Coules
,
H.
,
Smith
,
D.
,
Abburi
,
K.
,
Venkata
,
K.
, and
Truman
,
C.
,
2014
, “
A Method for Reconstruction of Residual Stress Fields From Measurements Made in an Incompatible Region
,”
Int. J. Solids Struct.
,
51
(
10
), pp.
1980
1990
.
56.
Chukkan
,
J.
,
Wu
,
G.
,
Fitzpatrick
,
M.
,
Jones
,
S.
, and
Kelleher
,
J.
,
2019
, “
An Iterative Technique for the Reconstruction of Residual Stress Fields in a Butt-Welded Plate From Experimental Measurement, and Comparison With Welding Process Simulation
,”
Int. J. Mech. Sci.
,
160
, pp.
421
428
.
57.
Chen
,
M.
,
Aquino
,
W.
,
Walsh
,
T.
,
Reu
,
P.
,
Johnson
,
K.
,
Rouse
,
J.
,
Jared
,
B.
, and
Bishop
,
J.
,
2020
, “
A Generalized Stress Inversion Approach With Application to Residual Stress Estimation
,”
ASME J. Appl. Mech.
,
87
(
11
), p.
111007
.
58.
Sunny
,
S.
,
Mathews
,
R.
,
Gleason
,
G.
,
Malik
,
A.
, and
Halley
,
J.
,
2021
, “
Effect of Metal Additive Manufacturing Residual Stress on Post-Process Machining Induced Stress and Distortion
,”
Int. J. Mech. Sci.
,
202
, p.
106534
.
59.
Wang
,
Z.
,
Chen
,
W.
,
Zhang
,
Y.
,
Chen
,
Z.
, and
Qiang
,
L.
,
2005
, “
Study on the Machining Distortion of Thin-Walled Part Caused by Redistribution of Residual Stress
,”
Chin. J. Aeronaut.
,
18
(
2
), pp.
175
179
.
60.
Guo
,
H.
,
Zuo
,
D.
,
Wu
,
H.
,
Xu
,
F.
, and
Tong
,
G.
,
2009
, “
Prediction on Milling Distortion for Aero-Multi-Frame Parts
,”
Mater. Sci. Eng.
,
499
(
1–2
), pp.
230
233
.
61.
Richter-Trummer
,
V.
,
Koch
,
D.
,
Witte
,
A.
,
Dos Santos
,
J.
, and
De Castro
,
P.
,
2013
, “
Methodology for Prediction of Distortion of Workpieces Manufactured by High-Speed Machining Based on an Accurate Through-the-Thickness Residual Stress Determination
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9
), pp.
2271
2281
.
62.
Becker
,
B.
,
2017
, “Advanced Machining Toolpath for Low Distortion,”
Third Wave Systems, Inc.
,
Eden Prairie, MN
, Technical Report W911W6-16-P-0044, https://apps.dtic.mil/sti/citations/AD1028171
63.
Mathews
,
R.
,
Sunny
,
S.
,
Malik
,
A.
, and
Halley
,
J.
,
2022
, “
Coupling Between Inherent and Machining-Induced Residual Stresses in Aluminum Components
,”
Int. J. Mech. Sci.
,
213
, p.
106865
.
64.
Wyatt
,
J.
, and
Berry
,
J.
,
2006
, “
A New Technique for the Determination of Superficial Residual Stress Associated With Machining and Other Manufacturing Processes
,”
J. Mater. Process. Technol.
,
171
(
1
), pp.
132
140
.
65.
Perez
,
I.
,
Madariaga
,
A.
,
Cuesta
,
M.
,
Gray
,
A.
,
Arrazola
,
P.
,
Ruiz
,
J.
,
Rubio
,
F.
, and
Sanchez
,
R.
,
2018
, “
Effect of Cutting Speed on the Surface Integrity of Face Milled 7050-T7451 Aluminium Workpieces
,”
Procedia CIRP
,
71
, pp.
460
465
.
66.
Denkena
,
B.
, and
de Leon
,
L.
,
2008
, “
Milling Induced Residual Stresses in Structural Parts Out of Forged Aluminium Alloys
,”
Int. J. Mach. Mach. Mater.
,
4
(
4
), pp.
335
344
.
67.
Rao
,
B.
, and
Shin
,
Y.
,
2001
, “
Analysis on High-Speed Face-Milling of 7075-T6 Aluminum Using Carbide and Diamond Cutters
,”
Int. J. Mach. Tools Manuf.
,
41
(
12
), pp.
1763
1781
.
68.
Tang
,
Z.
,
Liu
,
Z. Q.
,
Wan
,
Y.
, and
Ai
,
X.
,
2008
, “Study on Residual Stresses in Milling Aluminium Alloy 7050-T7451,”
Advanced Design and Manufacture to Gain Competitive Edge: New Manufacturing Techniques and Their Role in Improving Enterprise Performance
,
X. T.
Yan
,
C.
Jiang
, and
B.
Eynard
, eds.,
Springer
,
London
, pp.
169
178
.
69.
Aurrekoetxea
,
M.
,
Llanos
,
I.
,
Zelaieta
,
O.
, and
Norberto López de Lacalle
,
L.
,
2022
, “
Towards Advanced Prediction and Control of Machining Distortion: A Comprehensive Review
,”
Int. J. Adv. Manuf. Technol.
,
122
(
7–8
), pp.
2823
2848
.
70.
Fergani
,
O.
,
Lazoglu
,
I.
,
Mkaddem
,
A.
,
Mansori
,
M.
, and
Liang
,
S. Y.
,
2014
, “
Analytical Modeling of Residual Stress and the Induced Deflection of a Milled Thin Plate
,”
Int. J. Adv. Manuf. Technol.
,
75
(
1–4
), pp.
455
463
.
71.
Akhtar
,
W.
, and
Lazoglu
,
I.
,
2023
, “
A Novel Hybrid Model for Prediction of Distortions in Milling
,”
CIRP Ann.
,
72
(
1
), pp.
73
76
.
72.
Wang
,
S. Q.
,
Li
,
J. G.
,
He
,
C. L.
, and
Laghari
,
R. A.
,
2019
, “
An Analytical Model of Residual Stress in Orthogonal Cutting Based on the Radial Return Method
,”
J. Mater. Process. Technol.
,
273
, p.
116234
.
73.
Akhtar
,
W.
,
Lazoglu
,
I.
, and
Liang
,
S. Y.
,
2022
, “
Prediction and Control of Residual Stress-Based Distortions in the Machining of Aerospace Parts: A Review
,”
J. Manuf. Process.
,
76
, pp.
106
122
.
74.
Ullah
,
I.
,
Zhang
,
S.
, and
Waqar
,
S.
,
2022
, “
Numerical and Experimental Investigation on Thermo-Mechanically Induced Residual Stress in High-Speed Milling of Ti-6Al-4V Alloy
,”
J. Manuf. Process.
,
76
, pp.
575
587
.
You do not currently have access to this content.