Abstract

Laser polishing (LP) provides a fast and efficient way of remelting part surfaces manufactured by additive manufacturing to alter both their geometric as well as physical properties. Depending on the laser parameters, remelted surfaces with different properties are achieved, with a majority exhibiting lower surface roughness compared to the original surface. In this study, a high-power continuous fiber laser is used to polish Inconel 718 (IN718) surfaces produced by depositing a single layer of clads on a steel substrate by the powder-blown directed energy deposition (DED) process. Polishing was performed under different sets of parameters, namely, laser power, beam diameter, feed rate or feed, hatch spacing, and the number of polishing passes. Their effects on the surface roughness profiles and the microstructural properties of the sample cross section were analyzed after one and two polishing passes. Optical microscopic images of the sample's cross sections show the presence of supersaturated γ phase particles, γ+γ precipitates, Laves phases, and δ phase needles. The combined effect of high-temperature gradients and lower solidification rates in certain regions within the cross section results in undercooled regions and pseudo-heat treatment of unmelted regions close to the undercooled regions. These results are corroborated by indenting the various regions of the IN718 sample cross section with a pyramidal diamond indenter in the form of a grid, resulting in different micro-hardness values due to different densities of precipitate and phase transformed δ particles.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Webster
,
S.
,
Lin
,
H.
,
Carter
,
F.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2021
, “
Physical Mechanisms in Hybrid Additive Manufacturing: A Process Design Framework
,”
J. Mater. Process. Technol.
,
291
, p.
117048
.
2.
Godec
,
M.
,
Malej
,
S.
,
Feizpour
,
D.
,
Donik
,
Č.
,
Balažic
,
M.
,
Klobčar
,
D.
,
Pambaguian
,
L.
,
Conradi
,
M.
, and
Kocijan
,
A.
,
2021
, “
Hybrid Additive Manufacturing of Inconel 718 for Future Space Applications
,”
Mater. Charact.
,
172
, p.
110842
.
3.
Ding
,
R. G.
,
Huang
,
Z. W.
,
Li
,
H. Y.
,
Mitchell
,
I.
,
Baxter
,
G.
, and
Bowen
,
P.
,
2015
, “
Electron Microscopy Study of Direct Laser Deposited IN718
,”
Mater. Charact.
,
106
, pp.
324
337
.
4.
Sui
,
S.
,
Chen
,
J.
,
Zhang
,
R.
,
Ming
,
X.
,
Liu
,
F.
, and
Lin
,
X.
,
2017
, “
The Tensile Deformation Behavior of Laser Repaired Inconel 718 With a Non-Uniform Microstructure
,”
Mater. Sci. Eng. A
,
688
, pp.
480
487
.
5.
Ji
,
S.
,
Sun
,
Z.
,
Zhang
,
W.
,
Chen
,
X.
,
Xie
,
G.
, and
Chang
,
H.
,
2020
, “
Microstructural Evolution and High Temperature Resistance of Functionally Graded Material Ti-6Al-4V/Inconel 718 Coated by Directed Energy Deposition-Laser
,”
J. Alloys Compd.
,
848
, p.
156255
.
6.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured Inconel 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
.
7.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
, “Directed Energy Deposition Processes,”
Additive Manufacturing Technologies
,
Springer
,
New York
, pp.
245
268
.
8.
Maleki
,
E.
,
Bagherifard
,
S.
,
Bandini
,
M.
, and
Guagliano
,
M.
,
2020
, “
Surface Post-Treatments for Metal Additive Manufacturing: Progress, Challenges, and Opportunities
,”
Addit. Manuf.
,
37
, p.
101619
.
9.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
10.
Lamikiz
,
A.
,
Sanchez
,
J. A.
,
López de Lacalle
,
L. N.
, and
Arana
,
J. L.
,
2007
, “
Laser Polishing of Parts Built Up by Selective Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
2040
2050
.
11.
Krishnan
,
A.
, and
Fang
,
F.
,
2019
, “
Review on Mechanism and Process of Surface Polishing Using Lasers
,”
Front. Mech. Eng.
,
14
(
3
), pp.
299
319
.
12.
Temmler
,
A.
,
Willenborg
,
E.
, and
Wissenbach
,
K.
,
2012
, “Laser Polishing,”
Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII
(Vol. 8243),
International Society for Optics and Photonics
, p.
82430W
.
13.
Koike
,
R.
,
Misawa
,
T.
,
Aoyama
,
T.
, and
Kondo
,
M.
,
2018
, “
Controlling Metal Structure With Remelting Process in Direct Energy Deposition of Inconel 625
,”
CIRP Ann.
,
67
(
1
), pp.
237
240
.
14.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Li
,
X.
,
Pfefferkorn
,
F. E.
, and
Duffie
,
N. A.
,
2008
, “
Pulsed Laser Micro Polishing of Microfabricated Nickel and Ti6Al4V Samples
,”
Proceedings of the ASME 2008 International Manufacturing Science and Engineering Conference Collocated With the 3rd JSME/ASME International Conference on Materials and Processing, Volume 2
,
Evanston, IL
,
Oct. 7–10
, pp.
329
339
,
ASME
.
15.
Ramos
,
J. A.
,
Murphy
,
J.
,
Wood
,
K.
,
Bourell
,
D. L.
, and
Beaman
,
J. J.
,
2001
, “
Surface Roughness Enhancement of Indirect-SLS Metal Parts by Laser Surface Polishing
,”
2001 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
28
38
.
16.
Ramos
,
J. A.
,
Bourell
,
D. L.
, and
Beaman
,
J. J.
,
2002
, “
Surface Over-Melt During Laser Polishing of Indirect-SLS Metal Parts
,”
MRS Online Proc. Library
,
758
, pp.
53
61
.
17.
Parimi
,
L. L.
,
Ravi
,
G. A.
,
Clark
,
D.
, and
Attallah
,
M. M.
,
2014
, “
Microstructural and Texture Development in Direct Laser Fabricated IN718
,”
Mater. Charact.
,
89
, pp.
102
111
.
18.
Vincent
,
E. R.
,
1980
,
The Microstructure of Welds in Inconel 718
,
Department of Physics, University of Bristol
,
Bristol
.
19.
Thompson
,
R. G.
, and
Genculu
,
S.
,
1983
, “
Microstructural Evolution in the HAZ of Inconel 718 and Correlation With the Hot Ductility Test
,”
Weld. J.
,
62
(
12
), pp.
337s
345s
.
20.
Chlebus
,
E.
,
Gruber
,
K.
,
Kuźnicka
,
B.
,
Kurzac
,
J.
, and
Kurzynowski
,
T.
,
2015
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
639
, pp.
647
655
.
21.
Berjeza
,
N. A.
,
Velikevitch
,
S. P.
,
Mazhukin
,
V. I.
,
Smurov
,
I.
, and
Flamant
,
G.
,
1995
, “
Influence of Temperature Gradient to Solidification Velocity Ratio on the Structure Transformation in Pulsed- and CW-Laser Surface Treatment
,”
Appl. Surf. Sci.
,
86
(
1–4
), pp.
303
309
.
You do not currently have access to this content.