Abstract

This paper employed a scaling analysis to represent the processing parameters, affecting the melting process in the dimensionless numbers, identify the relationships of these dimensionless numbers, and develop semi-empirical correlations to predict the width and depth of the melt pool. To develop the correlations, Ti-6Al-4V powder was used to print 38 tracks at various processing conditions. The correlations were then fit into this experimental data using python code to find the constants of the correlations. The correlations were then used to predict the depth and width of the melt pools. It was found that the mean discrepancy between the predicted melt pool dimensions and the experiment is 7%. To evaluate the accuracy of the correlation in predicting the melt pool dimensions of the materials never used during the development of the correlations, the melt pool depth of some tracks made out of stainless steel 316L printed at various conditions was predicted using the model, and it was found that the mean discrepancy between the predicted melt pool depth and experiment is 11%.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Panwisawas
,
C.
,
Tang
,
Y. T.
, and
Reed
,
R. C.
,
2020
, “
Metal 3D Printing as a Disruptive Technology for Superalloys
,”
Nat. Commun.
,
11
(
1
), pp.
1
4
.
2.
Smil
,
V.
,
2016
,
Making the Modern World: Materials and Dematerialization
,
Lulu Press, Inc.
,
Morrisville, NC
.
3.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
4.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2522
2528
.
5.
Popovich
,
V.
,
Borisov
,
E.
,
Popovich
,
A.
,
Sufiiarov
,
V. S.
,
Masaylo
,
D.
, and
Alzina
,
L.
,
2017
, “
Functionally Graded Inconel 718 Processed by Additive Manufacturing: Crystallographic Texture, Anisotropy of Microstructure and Mechanical Properties
,”
Mater. Des.
,
114
, pp.
441
449
.
6.
Carter
,
L. N.
,
Villapún
,
V. M.
,
Grover
,
L.
, and
Cox
,
S. C.
,
2022
, “
Exploring the Duality of Powder Adhesion and Underlying Surface Roughness in Laser Powder Bed Fusion Processed Ti-6Al-4V
,”
J. Manuf. Process.
,
81
, pp.
14
26
.
7.
Robinson
,
J.
,
Ashton
,
I.
,
Fox
,
P.
,
Jones
,
E.
, and
Sutcliffe
,
C.
,
2018
, “
Determination of the Effect of Scan Strategy on Residual Stress in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
23
, pp.
13
24
.
8.
Yang
,
Y.
,
Großmann
,
A.
,
Kühn
,
P.
,
Mölleney
,
J.
,
Kropholler
,
L.
,
Mittelstedt
,
C.
, and
Xu
,
B.-X.
,
2022
, “
Validated Dimensionless Scaling Law for Melt Pool Width in Laser Powder Bed Fusion
,”
J. Mater. Process. Technol.
,
299
, p.
117316
.
9.
Parsazadeh
,
M.
,
Sharma
,
S.
, and
Dahotre
,
N.
,
2023
, “
Towards the Next Generation of Machine Learning Models in Additive Manufacturing: A Review of Process Dependent Material Evolution
,”
Prog. Mater. Sci.
,
135
, p.
101102
.
10.
Metelkova
,
J.
,
Kinds
,
Y.
,
Kempen
,
K.
,
de Formanoir
,
C.
,
Witvrouw
,
A.
, and
Van Hooreweder
,
B.
,
2018
, “
On the Influence of Laser Defocusing in Selective Laser Melting of 316l
,”
Addit. Manuf.
,
23
, pp.
161
169
.
11.
Fuhrich
,
T.
,
Berger
,
P.
, and
Hügel
,
H.
,
2001
, “
Marangoni Effect in Laser Deep Penetration Welding of Steel
,”
J. Laser Appl.
,
13
(
5
), pp.
178
186
.
12.
Gladush
,
G. G.
, and
Smurov
,
I.
,
2011
,
Physics of Laser Materials Processing: Theory and Experiment
, Vol.
146
,
Springer Science & Business Media
,
Berlin, Germany
.
13.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
29
, p.
100830
.
14.
Nakamura
,
S.
,
Sakurai
,
M.
,
Kamimuki
,
K.
,
Inoue
,
T.
, and
Ito
,
Y.
,
2000
, “
Detection Technique for Transition Between Deep Penetration Mode and Shallow Penetration Mode in CO2 Laser Welding of Metals
,”
J. Phys. D: Appl. Phys.
,
33
(
22
), p.
2941
.
15.
Hann
,
D.
,
Iammi
,
J.
, and
Folkes
,
J.
,
2011
, “
A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters
,”
J. Phys. D: Appl. Phys.
,
44
(
44
), p.
445401
.
16.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
17.
Grossmann
,
A.
,
Felger
,
J.
,
Froelich
,
T.
,
Gosmann
,
J.
, and
Mittelstedt
,
C.
,
2019
, “
Melt Pool Controlled Laser Powder Bed Fusion for Customised Low-Density Lattice Structures
,”
Mater. Des.
,
181
, p.
108054
.
18.
Boley
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Calculation of Laser Absorption by Metal Powders in Additive Manufacturing
,”
Appl. Opt.
,
54
(
9
), pp.
2477
2482
.
19.
Van Elsen
,
M.
,
Al-Bender
,
F.
, and
Kruth
,
J.-P.
,
2008
, “
Application of Dimensional Analysis to Selective Laser Melting
,”
Rapid Prototyp. J.
,
14
, p.
15
.
20.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), p.
345
.
21.
Rankouhi
,
B.
,
Agrawal
,
A. K.
,
Pfefferkorn
,
F. E.
, and
Thoma
,
D. J.
,
2021
, “
A Dimensionless Number for Predicting Universal Processing Parameter Boundaries in Metal Powder Bed Additive Manufacturing
,”
Manuf. Lett.
,
27
, pp.
13
17
.
22.
Mukherjee
,
T.
,
Manvatkar
,
V.
,
De
,
A.
, and
DebRoy
,
T.
,
2017
, “
Dimensionless Numbers in Additive Manufacturing
,”
J. Appl. Phys.
,
121
(
6
), p.
064904
.
23.
Fabbro
,
R.
,
Dal
,
M.
,
Peyre
,
P.
,
Coste
,
F.
,
Schneider
,
M.
, and
Gunenthiram
,
V.
,
2018
, “
Analysis and Possible Estimation of Keyhole Depths Evolution, Using Laser Operating Parameters and Material Properties
,”
J. Laser Appl.
,
30
(
3
), p.
032410
.
24.
Fabbro
,
R.
,
2019
, “
Scaling Laws for the Laser Welding Process in Keyhole Mode
,”
J. Mater. Process. Technol.
,
264
, pp.
346
351
.
25.
Weaver
,
J. S.
,
Heigel
,
J. C.
, and
Lane
,
B. M.
,
2022
, “
Laser Spot Size and Scaling Laws for Laser Beam Additive Manufacturing
,”
J. Manuf. Process.
,
73
, pp.
26
39
.
26.
Rubenchik
,
A. M.
,
King
,
W. E.
, and
Wu
,
S. S.
,
2018
, “
Scaling Laws for the Additive Manufacturing
,”
J. Mater. Process. Technol.
,
257
, pp.
234
243
.
27.
Wang
,
Z.
, and
Liu
,
M.
,
2019
, “
Dimensionless Analysis on Selective Laser Melting to Predict Porosity and Track Morphology
,”
J. Mater. Process. Technol.
,
273
, p.
116238
.
28.
Ye
,
J.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Crumb
,
M. F.
,
Guss
,
G.
,
Belak
,
J.
, and
Matthews
,
M. J.
,
2019
, “
Energy Coupling Mechanisms and Scaling Behavior Associated With Laser Powder Bed Fusion Additive Manufacturing
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1900185
.
29.
Promoppatum
,
P.
, and
Yao
,
S.-C.
,
2019
, “
Analytical Evaluation of Defect Generation for Selective Laser Melting of Metals
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1
), pp.
1185
1198
.
30.
Simonds
,
B. J.
,
Tanner
,
J.
,
Artusio-Glimpse
,
A.
,
Williams
,
P. A.
,
Parab
,
N.
,
Zhao
,
C.
, and
Sun
,
T.
,
2021
, “
The Causal Relationship Between Melt Pool Geometry and Energy Absorption Measured in Real Time During Laser-Based Manufacturing
,”
Appl. Mater. Today
,
23
, p.
101049
.
31.
Goossens
,
L. R.
, and
Van Hooreweder
,
B.
,
2021
, “
A Virtual Sensing Approach for Monitoring Melt-Pool Dimensions Using High Speed Coaxial Imaging During Laser Powder Bed Fusion of Metals
,”
Addit. Manuf.
,
40
, p.
101923
.
32.
Parsazadeh
,
M.
, and
Duan
,
X.
,
2020
, “
Numerical and Experimental Investigation of Phase Change Heat Transfer in the Presence of Rayleigh–Benard Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
6
), p.
062401
.
33.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
34.
Hahn
,
D. W.
, and
Özisik
,
M. N.
,
2012
,
Heat Conduction
,
John Wiley & Sons
,
Hoboken, NJ
.
35.
Boeck
,
T.
, and
Thess
,
A.
,
1999
, “
Bénard-Marangoni Convection at Low Prandtl Number
,”
J. Fluid Mech.
,
399
, pp.
251
275
.
36.
Bäuerle
,
D.
,
2013
,
Laser Processing and Chemistry
,
Springer Science & Business Media
,
Berlin, Germany
.
37.
Nasiri
,
M. B.
, and
Enzinger
,
N.
,
2019
, “
An Analytical Solution for Temperature Distribution in Fillet Arc Welding Based on an Adaptive Function
,”
Weld World
,
63
(
2
), pp.
409
419
.
38.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E.
,
1993
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Novelty, OH
.
39.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
40.
Brandes
,
E.
, and
Brook
,
G.
, “Equilibrium Diagrams, Smithells Metals Reference Book,” 7th ed.,
Reed Educational and Professional Publishing Ltd
,
Oxford, UK
.
41.
Sola
,
A.
, and
Nouri
,
A.
,
2019
, “
Microstructural Porosity in Additive Manufacturing: The Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion
,”
J. Adv. Manuf. Process.
,
1
(
3
), p.
e10021
.
42.
Wang
,
H.
, and
Zou
,
Y.
,
2019
, “
Microscale Interaction Between Laser and Metal Powder in Powder-Bed Additive Manufacturing: Conduction Mode Versus Keyhole Mode
,”
Int. J. Heat Mass Transfer
,
142
, p.
118473
.
43.
Mishra
,
A. K.
, and
Kumar
,
A.
,
2020
, “
Effect of Surface Morphology on the Melt Pool Geometry in Single Track Selective Laser Melting
,”
Mater. Today Proc.
,
27
, pp.
816
823
.
44.
Shahzad
,
K.
,
Deckers
,
J.
,
Kruth
,
J.-P.
, and
Vleugels
,
J.
,
2013
, “
Additive Manufacturing of Alumina Parts by Indirect Selective Laser Sintering and Post Processing
,”
J. Mater. Process. Technol.
,
213
(
9
), pp.
1484
1494
.
45.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
, pp.
261
272
.
46.
Kamath
,
C.
,
El-Dasher
,
B.
,
Gallegos
,
G. F.
,
King
,
W. E.
, and
Sisto
,
A.
,
2014
, “
Density of Additively-Manufactured, 316l SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400 W
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1
), pp.
65
78
.
You do not currently have access to this content.