Abstract

Inkjet three-dimensional (3D) printing has emerged as a transformative manufacturing technique, finding applications in diverse fields such as biomedical, metal fabrication, and functional materials production. It involves precise deposition of materials onto a moving substrate through a nozzle, achieving submillimeter scale resolution. However, the dynamic nature of droplet deposition introduces uncertainties, challenging consistent quality control. Current process monitoring, relying on image-based techniques, is slow and limited, hindering real-time feedback in erratic droplet ejection. In response to these challenges, we present the zero-dimensional ultrafast sensing (0-DUS) system, a novel, cost-effective, in situ monitoring tool designed to assess the quality of drop-on-demand inkjet printing. The 0-DUS system leverages the sensitivity of the light-beam field interference effect to rapidly and precisely detect and analyze localized droplets. Two core technical advancements drive this innovation: first, the exploration of integral sensing of the computational light-beam field, which allows for efficient extraction of temporal and spatial information about droplet evolution, introducing a novel in situ sensing modality; second, the establishment of a robust mapping mechanism that aligns sensor data with image-based data, facilitating accurate estimation of droplet characteristics. We successfully implemented the 0-DUS system within a commercial inkjet printer and conducted a comparative analysis with ground truth data. Our experimental results demonstrate a detection accuracy exceeding 95%, even at elevated speeds, allowing for an impressive in situ certification throughput of up to 500 Hz. Consequently, our proposed 0-DUS system meets the stringent quality assurance requirements, thereby expanding the potential applications of inkjet printing across a wide spectrum of industrial sectors.

References

1.
Singh
,
M.
,
Haverinen
,
H. M.
,
Dhagat
,
P.
, and
Jabbour
,
G. E.
,
2010
, “
Inkjet Printing – Process and Its Applications
,”
Adv. Mater.
,
22
(
6
), pp.
673
685
.
2.
Alamán
,
J.
,
Alicante
,
R.
,
Peña
,
J. I.
, and
Sánchez-Somolinos
,
C.
,
2016
, “
Inkjet Printing of Functional Materials for Optical and Photonic Applications
,”
Materials
,
9
(
11
), p.
910
.
3.
Xie
,
D.
,
Zhang
,
H.
,
Shu
,
X.
, and
Xiao
,
J.
,
2012
, “
Fabrication of Polymer Micro-Lens Array With Pneumatically Diaphragm-Driven Drop-on-Demand Inkjet Technology
,”
Opt. Express
,
20
(
14
), pp.
15186
15195
.
4.
Su
,
W.
,
Cook
,
B. S.
,
Fang
,
Y.
, and
Tentzeris
,
M. M.
,
2016
, “
Fully Inkjet-Printed Microfluidics: A Solution to Low-Cost Rapid Three-Dimensional Microfluidics Fabrication With Numerous Electrical and Sensing Applications
,”
Sci. Rep.
,
6
(
1
), pp.
1
12
.
5.
Sun
,
J.
,
Bao
,
B.
,
He
,
M.
,
Zhou
,
H.
, and
Song
,
Y.
,
2015
, “
Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets
,”
ACS Appl. Mater. Interfaces
,
7
(
51
), pp.
28086
28099
.
6.
Chivate
,
A.
, and
Zhou
,
C.
,
2024
, “
Additive Manufacturing of Micropatterned Functional Surfaces: A Review
,”
Int. J. Extreme Manuf..
6
(
4
), p.
042004
.
7.
Xie
,
D.
,
Zhang
,
H.
,
Shu
,
X.
,
Xiao
,
J.
, and
Cao
,
S.
,
2010
, “
Multi-Materials Drop-on-Demand Inkjet Technology Based on Pneumatic Diaphragm Actuator
,”
Sci. China Technol. Sci.
,
53
(
6
), pp.
1605
1611
.
8.
Lee
,
T.-M.
,
Kang
,
T. G.
,
Yang
,
J. S.
,
Jo
,
J.
,
Kim
,
K. Y.
,
Choi
,
B. O.
, and
Kim
,
D. S.
,
2008
, “
Drop-on-Demand Solder Droplet Jetting System for Fabricating Microstructure
,”
IEEE Trans. Electron. Packag. Manuf.
,
31
(
3
), pp.
202
210
.
9.
Zhou
,
W.
,
Loney
,
D.
,
Fedorov
,
A. G.
,
Degertekin
,
F. L.
, and
Rosen
,
D. W.
,
2015
, “
Shape Evolution of Multiple Interacting Droplets in Inkjet Deposition
,”
Rapid Prototyp. J.
,
21
(
4
), pp.
373
385
.
10.
Huang
,
J.
,
Segura
,
L. J.
,
Wang
,
T.
,
Zhao
,
G.
,
Sun
,
H.
, and
Zhou
,
C.
,
2020
, “
Unsupervised Learning for the Droplet Evolution Prediction and Process Dynamics Understanding in Inkjet Printing
,”
Addit. Manuf.
,
35
, p.
101197
.
11.
Huang
,
J.
,
Wang
,
T.
,
Segura
,
L. J.
,
Joshi
,
G. S.
,
Sun
,
H.
, and
Zhou
,
C.
,
2020
, “
Spatiotemporal Fusion Network for the Droplet Behavior Recognition in Inkjet Printing
,”
International Manufacturing Science and Engineering Conference
,
Cincinnati, OH
,
June 22–26
.
12.
Segura
,
L. J.
,
Li
,
Z.
,
Zhou
,
C.
, and
Sun
,
H.
,
2023
, “
Droplet Evolution Prediction in Material Jetting via Tensor Time Series Analysis
,”
Addit. Manuf.
,
66
, p.
103461
.
13.
Wang
,
T.
,
Zhou
,
C.
, and
Xu
,
W.
,
2019
, “
Online Droplet Monitoring in Inkjet 3D Printing Using Catadioptric Stereo System
,”
IISE Trans.
,
51
(
2
), pp.
153
167
.
14.
Singh
,
R.
,
Zhang
,
X.
,
Chen
,
Y.
,
Zheng
,
J.
, and
Qin
,
H.
,
2018
, “
In-Situ Real-Time Characterization of Micro-Filaments for Electrohydrodynamic Ink-Jet Printing Using Machine Vision
,”
Procedia Manuf.
,
17
, pp.
45
52
.
15.
Segura
,
L. J.
,
Wang
,
T.
,
Zhou
,
C.
, and
Sun
,
H.
,
2021
, “
Online Droplet Anomaly Detection From Streaming Videos in Inkjet Printing
,”
Addit. Manuf.
,
38
, p.
101835
.
16.
Li
,
Z.
,
Segura
,
L. J.
,
Li
,
Y.
,
Zhou
,
C.
, and
Sun
,
H.
,
2023
, “
Multiclass Reinforced Active Learning for Droplet Pinch-Off Behaviors Identification in Inkjet Printing
,”
ASME J. Manuf. Sci. Eng.
,
145
(
7
), p.
071002
.
17.
Shin
,
D.-Y.
, and
Kim
,
M.
,
2017
, “
Rapid Jetting Status Inspection and Accurate Droplet Volume Measurement for a Piezo Drop-on-Demand Inkjet Print Head Using a Scanning Mirror for Display Applications
,”
Rev. Sci. Instrum.
,
88
(
2
), p.
025109
.
18.
Lin
,
X.
,
Subbaraman
,
H.
,
Pan
,
Z.
,
Hosseini
,
A.
,
Longe
,
C.
,
Kubena
,
K.
,
Schleicher
,
P.
,
Foster
,
P.
,
Brickey
,
S.
, and
Chen
,
R. T.
,
2014
, “
Towards Realizing High-Throughput, Roll-to-Roll Manufacturing of Flexible Electronic Systems
,”
Electronics
,
3
(
4
), pp.
624
635
.
19.
Kwon
,
K.-S.
,
2009
, “
Waveform Design Methods for Piezo Inkjet Dispensers Based on Measured Meniscus Motion
,”
J. Microelectromech. Syst.
,
18
(
5
), pp.
1118
1125
.
20.
Kwon
,
K.-S.
,
2009
, “
Methods for Detecting Air Bubble in Piezo Inkjet Dispensers
,”
Sens. Actuators, A
,
153
(
1
), pp.
50
56
.
21.
Kim
,
B.-H.
,
Kim
,
S. I.
,
Shin
,
H. H.
,
Park
,
N. R.
,
Lee
,
H. S.
,
Kang
,
C. S.
,
Shin
,
S. J.
, and
Kim
,
S. J.
,
2011
, “
A Study of the Jetting Failure for Self-Detected Piezoelectric Inkjet Printheads
,”
IEEE Sens. J.
,
11
(
12
), pp.
3451
3456
.
22.
Wang
,
L.
,
Wang
,
K.
,
Hu
,
H.
,
Luo
,
Y.
,
Chen
,
L.
,
Chen
,
S.
, and
Lu
,
B.
,
2020
, “
Inkjet Jet Failures Detection and Droplets Speed Monitoring Using Piezo Self-Sensing
,”
Sens. Actuators, A
,
313
, p.
112178
.
23.
Chivate
,
A.
,
Li
,
Z.
,
Kamble
,
P.
,
Sun
,
H.
, and
Zhou
,
C.
,
2024
, “
Investigating Jet Stability in Inkjet Printing Through a Novel Sensing Modality
,”
International Manufacturing Science and Engineering Conference
,
Knoxville, TN
,
June 17–21
.
25.
Tymecki
,
Ł
, and
Koncki
,
R.
,
2009
, “
Simplified Paired-Emitter–Detector-Diodes-Based Photometry With Improved Sensitivity
,”
Anal. Chim. Acta
,
639
(
1–2
), pp.
73
77
.
26.
Hongyang
,
C.
,
Ping
,
D.
,
Yongjun
,
X.
, and
Xiaowei
,
L.
,
2005
, “
A Robust Location Algorithm With Biased Extended Kalman Filtering of TDOA Data for Wireless Sensor Networks
,”
Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing
,
Maui, HI
,
June 13 –16
, Vol. 2, IEEE, pp.
883
886
.
27.
Wang
,
A.
,
Wang
,
T.
,
Zhou
,
C.
, and
Xu
,
W.
,
2017
, “
Luban: Low-Cost and In-Situ Droplet Micro-Sensing for Inkjet 3D Printing Quality Assurance
,”
Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems
,
Delft, Netherlands
,
Nov. 6 –8
.
28.
Herran
,
C. L.
, and
Coutris
,
N.
,
2013
, “
Drop-on-Demand for Aqueous Solutions of Sodium Alginate
,”
Exp. Fluids
,
54
(
6
), pp.
1
25
.
29.
Ab-Rahman
,
M. S.
,
Azizan
,
L. A.-H.
,
Ramza
,
H.
, and
Musa
,
Z.
,
2012
, “
The Comparison of Experimental and Analytical Study of the Gaussian IntensityDistribution for Light Emitting Diodes Beam
,”
J. Comput. Sci.
,
8
(
6
), pp.
913
919
.
30.
Waissi
,
G. R.
, and
Rossin
,
D. F.
,
1996
, “
A Sigmoid Approximation of the Standard Normal Integral
,”
Appl. Math. Comput.
,
77
(
1
), pp.
91
95
.
You do not currently have access to this content.