Abstract

Laser powder bed fusion (LPBF) is an enabling process manufacture of complex metal components. However, LPBF is prone to generate geometrical defects (e.g., porosity, lack of fusion), which causes a significant fatigue scattering. However, LPBF fatigue scattering data and analysis in the literature are not only sparse and limited to tension-compression mode but also inconsistent. This article presents a robust high-frequency fatigue testing method to construct stress-cycle curves of SS 316L to understand the scattering nature and predict the scattering pattern. A series of bending fatigue tests are performed at different stress amplitudes. Two different runout criteria are used to investigate fatigue life, fatigue limits, and scattering. The endurance limit reaches around 300 MPa for the defect size distribution at the selected process space. The defect size-based fatigue limit model is found to underestimate the endurance limit by about 30 MPa when comparing with the experimental data. Fatigue scattering is further calculated by using 95% prediction intervals, showing that low fatigue scattering is present at high stresses while a large variation of fatigue life occurs at stresses near the knee point.

References

1.
Murakami
,
Y.
,
Takagi
,
T.
,
Wada
,
K.
, and
Matsunaga
,
H.
,
2021
, “
Essential Structure of S-N Curve: Prediction of Fatigue Life and Fatigue Limit of Defective Materials and Nature of Scatter
,”
Int. J. Fatigue
,
146
, p.
106138
.
2.
Shrestha
,
R.
,
Simsiriwong
,
J.
, and
Shamsaei
,
N.
,
2021
, “
Fatigue Behavior of Additive Manufactured 316L Stainless Steel Under Axial Versus Rotating-Bending Loading: Synergistic Effects of Stress Gradient, Surface Roughness, and Volumetric Defects
,”
Int. J. Fatigue
,
144
, p.
106063
.
3.
Tang
,
M.
, and
Pistorius
,
P. C.
,
2017
, “
Oxides, Porosity and Fatigue Performance of AlSi10Mg Parts Produced by Selective Laser Melting
,”
Int. J. Fatigue
,
94
, pp.
192
201
.
4.
Liverani
,
E.
,
Toschi
,
S.
,
Ceschini
,
L.
, and
Fortunato
,
A.
,
2017
, “
Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
249
, pp.
255
263
.
5.
Gordon
,
J. V.
,
Narra
,
S. P.
,
Cunningham
,
R. W.
,
Liu
,
H.
,
Chen
,
H.
,
Suter
,
R. M.
,
Beuth
,
J. L.
, and
Rollett
,
A. D.
,
2020
, “
Defect Structure Process Maps for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101552
.
6.
Smoqi
,
Z.
,
Gaikwad
,
A.
,
Bevans
,
B.
,
Kobir
,
M. H.
,
Craig
,
J.
,
Abul-Haj
,
A.
,
Peralta
,
A.
, and
Rao
,
P.
,
2022
, “
Monitoring and Prediction of Porosity in Laser Powder Bed Fusion Using Physics-Informed Meltpool Signatures and Machine Learning
,”
J. Mater. Process. Technol.
,
304
, p.
117550
.
7.
Mohr
,
G.
,
Altenburg
,
S. J.
,
Ulbricht
,
A.
,
Heinrich
,
P.
,
Baum
,
D.
,
Maierhofer
,
C.
, and
Hilgenberg
,
K.
,
2020
, “
In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography
,”
Metals (Basel)
,
10
(
1
), p.
103
.
8.
Murakami
,
Y.
,
1994
, “
Inclusion Rating by Statistics of Extreme Values and Its Application to Fatigue Strength Prediction and Quality Control of Materials
,”
J. Res. Nat. Inst. Stand. Technol.
,
99
(
4
), pp.
345
351
.
9.
Murakami
,
Y.
,
2002
,
Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
,
Elsevier Science Ltd.
,
Amsterdam, Netherlands
.
10.
Murakami
,
Y.
,
Kodoma
,
S.
, and
Konuma
,
S.
,
1989
, “
Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. I: Basic Fatigue Mechanism and Evaluation of Correlation Between the Fatigue Fracture Stress and the Size and Location of Non-Metallic Inclusions
,”
Int. J. Fatigue
,
11
(
5
), pp.
291
298
.
11.
Murakami
,
Y.
, and
Usuki
,
H.
,
1989
, “
Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. II: Fatigue Limit Evaluation Based on Statistics for Extreme Values of Inclusion Size
,”
Int. J. Fatigue
,
11
(
5
), pp.
299
307
.
12.
Murakami
,
Y.
,
Masuo
,
H.
,
Tanaka
,
Y.
, and
Nakatani
,
M.
,
2019
, “
Defect Analysis for Additively Manufactured Materials in Fatigue From the Viewpoint of Quality Control and Statistics of Extremes
,”
Procedia Struct. Integrity
,
19
, pp.
113
122
.
13.
Zhang
,
M.
,
Sun
,
C. N.
,
Zhang
,
X.
,
Goh
,
P. C.
,
Wei
,
J.
,
Hardacre
,
D.
, and
Li
,
H.
,
2017
, “
Fatigue and Fracture Behaviour of Laser Powder Bed Fusion Stainless Steel 316L: Influence of Processing Parameters
,”
Mater. Sci. Eng. A
,
703
, pp.
251
261
.
14.
Werner
,
T.
,
Madia
,
M.
, and
Zerbst
,
U.
,
2021
, “Comparison of the Fatigue Behavior of Wrought and Additively Manufactured AISI 316L,”
Procedia Structural Integrity
,
F.
Levebvre
and
P.
Souquet
, eds.,
Elsevier B.V.
,
Amsterdam, Netherlands
, pp.
554
563
.
15.
Elangeswaran
,
C.
,
Cutolo
,
A.
,
Muralidharan
,
G. K.
,
de Formanoir
,
C.
,
Berto
,
F.
,
Vanmeensel
,
K.
, and
Van Hooreweder
,
B.
,
2019
, “
Effect of Post-Treatments on the Fatigue Behaviour of 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
,”
Int. J. Fatigue
,
123
, pp.
31
39
.
16.
Zhu
,
W.
,
Moumni
,
Z.
,
Zhu
,
J.
,
Zhang
,
Y.
,
Li
,
S.
, and
Zhang
,
W.
,
2023
, “
A Multi-Scale Experimental Investigation for Fatigue Limit and Fatigue Crack Initiation Behavior of Powder Bed Fusion-Laser Beam 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
866
, p.
144692
.
17.
De Finis
,
R.
,
Palumbo
,
D.
,
Ancona
,
F.
, and
Galietti
,
U.
,
2015
, “
Fatigue Limit Evaluation of Various Martensitic Stainless Steels With New Robust Thermographic Data Analysis
,”
Int. J. Fatigue
,
74
, pp.
88
96
.
18.
ASTM International
,
2023
, “A473 Standard Specification for Stainless Steel Forgings,”
ASTM International
,
West Conshohocken, PA
.
19.
ASTM International
,
2021
, “F2971 Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing,”
ASTM International
,
West Conshohocken, PA
.
20.
ASTM International
,
2020
, “E3166 Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Build,”
ASTM International
,
West Conshohocken, PA
.
21.
ASTM International
,
2021
, “F2924 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium With Powder Bed Fusion,”
ASTM International
,
West Conshohocken, PA
.
22.
Kousoulas
,
P.
, and
Guo
,
Y. B.
,
2023
, “
Process Signature for Porosity-Dominant Fatigue Scattering of Materials Processed by Laser Fusion
,”
J. Fail. Anal. Prev.
,
23
(
5
), pp.
2075
2089
.
23.
Kousoulas
,
P.
, and
Guo
,
Y. B.
,
2023
, “
A Statistics of Extremes-Based Method to Predict the Upper Bound of Geometrical Defects in Powder Bed Fusion
,”
Manuf. Lett.
,
35
, pp.
80
87
.
24.
Kousoulas
,
P.
, and
Guo
,
Y. B.
,
2023
, “
On the Probabilistic Prediction for Extreme Geometrical Defects Induced by Laser-Based Powder Bed Fusion
,”
CIRP J. Manuf. Sci. Technol.
,
41
, pp.
124
134
.
25.
Cui
,
L.
,
Jiang
,
F.
,
Peng
,
R. L.
,
Mousavian
,
R. T.
,
Yang
,
Z.
, and
Moverare
,
J.
,
2022
, “
Dependence of Microstructures on Fatigue Performance of Polycrystals: A Comparative Study of Conventional and Additively Manufactured 316L Stainless Steel
,”
Int. J. Plast.
,
149
, p.
103172
.
26.
Murakami
,
Y.
, and
Beretta
,
S.
,
1999
, “
Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models, and Statistical Implications
,”
Extremes (Boston)
,
2
(
2
), pp.
123
147
.
27.
Mower
,
T. M.
, and
Long
,
M. J.
,
2016
, “
Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials
,”
Mater. Sci. Eng. A
,
651
, pp.
198
213
.
28.
Wycisk
,
E.
,
Solbach
,
A.
,
Siddique
,
S.
,
Herzog
,
D.
,
Walther
,
F.
, and
Emmelmann
,
C.
,
2014
, “
Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties
,”
Phys. Procedia
,
56
, pp.
371
378
.
29.
Romano
,
S.
,
Brückner-Foit
,
A.
,
Brandão
,
A.
,
Gumpinger
,
J.
,
Ghidini
,
T.
, and
Beretta
,
S.
,
2018
, “
Fatigue Properties of AlSi10Mg Obtained by Additive Manufacturing: Defect-Based Modelling and Prediction of Fatigue Strength
,”
Eng. Fract. Mech.
,
187
, pp.
165
189
.
30.
Weiss
,
N. A.
,
2020
,
Introductory Statistics
, 10th ed.,
Pearson
,
Hoboken
.
You do not currently have access to this content.