Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A new method is presented to identify the dynamics of regenerative chatter from measured process vibrations in milling. This method combines the synchronous once-per-revolution sampling of process vibrations with the operational modal analysis to estimate the Floquet multipliers of the delayed linear time-periodic dynamics in milling, all from the natural process vibrations without external excitation. The identified multipliers quantify vibration stability, enabling chatter prediction before it occurs. In addition to this, they can be used to calibrate physics-based chatter models based on vibration measurements solely within the stable region. The method’s accuracy in identifying Floquet multipliers is validated through extensive numerical simulations and two experimental case studies. The results show that chatter due to both Hopf and period-doubling bifurcations can be predicted from the process vibrations during stable cuts. Moreover, the experimental case studies demonstrate a vibration measurement system for implementing the presented method in standard milling operations and confirm its effectiveness in practice.

References

1.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, NY
.
2.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of Machine Tools Against Self Excited Vibrations in Machining
,”
ASME International Production Engineering Research Conference
,
Pittsburgh, PA
.
3.
Tobias
,
S.
, and
Fischwick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
Engineer
,
205
(
7
), pp.
199
203
.
4.
Altintas
,
Y.
,
Stepan
,
G.
,
Budak
,
E.
,
Schmitz
,
T.
, and
Kilic
,
Z. M.
,
2020
, “
Chatter Stability of Machining Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110801
.
5.
Altintas
,
Y.
,
Stépán
,
G.
,
Merdol
,
D.
, and
Dombóvári
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
.
6.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
7.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
8.
Bayly
,
P.
,
Halley
,
J.
,
Mann
,
B. P.
, and
Davies
,
M.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.
9.
Farhadmanesh
,
M.
, and
Ahmadi
,
K.
,
2021
, “
Online Identification of Mechanistic Milling Force Models
,”
Mech. Syst. Signal Process.
,
149
, p.
107318
.
10.
Mohammadi
,
Y.
, and
Ahmadi
,
K.
,
2023
, “
In-Process Frequency Response Function Measurement for Robotic Milling
,”
Exp. Tech.
,
47
(
4
), pp.
797
816
.
11.
Özşahin
,
O.
,
Budak
,
E.
, and
Özgüven
,
H. N.
,
2015
, “
In-Process Tool Point FRF Identification Under Operational Conditions Using Inverse Stability Solution
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
64
73
.
12.
Minis
,
I. E.
,
Magrab
,
E. B.
, and
Pandelidis
,
I. O.
,
1990
, “
Improved Methods for the Prediction of Chatter in Turning, Part 1: Determination of Structural Response Parameters
,”
J. Eng. Ind.
,
112
(
1
), pp.
12
20
.
13.
Cherukuri
,
H.
,
Perez-Bernabeu
,
E.
,
Selles
,
M.
, and
Schmitz
,
T.
,
2019
, “
Machining Chatter Prediction Using a Data Learning Model
,”
J. Manuf. Mater. Process.
,
3
(
2
), p.
45
.
14.
Karandikar
,
J.
,
Honeycutt
,
A.
,
Schmitz
,
T.
, and
Smith
,
S.
,
2020
, “
Stability Boundary and Optimal Operating Parameter Identification in Milling Using Bayesian Learning
,”
J. Manuf. Process.
,
56
, Part B, pp.
1252
1262
.
15.
Corson
,
G.
,
Karandikar
,
J.
, and
Schmitz
,
T.
,
2023
, “
Physics-Informed Bayesian Machine Learning Case Study: Integral Blade Rotors
,”
J. Manuf. Process.
,
85
, pp.
503
514
.
16.
Brincker
,
R.
, and
Ventura
,
C. E.
,
2015
,
Introduction to Operational Modal Analysis
, 1st ed.,
John Wiley & Sons
,
Hoboken, NJ
.
17.
Berthold
,
J.
,
Kolouch
,
M.
,
Regel
,
J.
, and
Dix
,
M.
,
2024
, “
Identification of Natural Frequencies of Machine Tools During Milling: Comparison of the Experimental Modal Analysis and the Operational Modal Analysis
,”
Prod. Eng.
,
18
, pp.
853
862
.
18.
Wan
,
M.
,
Feng
,
J.
,
Ma
,
Y.-C.
, and
Zhang
,
W.-H.
,
2017
, “
Identification of Milling Process Damping Using Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
120
131
.
19.
Zaghbani
,
I.
, and
Songmene
,
V.
,
2009
, “
Estimation of Machine-Tool Dynamic Parameters During Machining Operation Through Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
947
957
.
20.
Ahmadi
,
K.
, and
Altintas
,
Y.
,
2014
, “
Identification of Machining Process Damping Using Output-Only Modal Analysis
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051017
.
21.
Kim
,
S.
, and
Ahmadi
,
K.
,
2019
, “
Estimation of Vibration Stability in Turning Using Operational Modal Analysis
,”
Mech. Syst. Signal Process.
,
130
, pp.
315
332
.
22.
Ahmadi
,
K.
,
2022
, “
Bayesian Updating of Modal Parameters for Modeling Chatter in Turning
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
724
736
.
23.
Teti
,
R.
,
Jemielniak
,
K.
,
O’Donnell
,
G.
, and
Dornfeld
,
D.
,
2010
, “
Advanced Monitoring of Machining Operations
,”
CIRP Ann.
,
59
(
2
), pp.
717
739
.
24.
Schmitz
,
T. L.
,
2003
, “
Chatter Recognition by a Statistical Evaluation of the Synchronously Sampled Audio Signal
,”
J. Sound Vib.
,
262
(
3
), pp.
721
730
.
25.
Kuljanic
,
E.
,
Totis
,
G.
, and
Sortino
,
M.
,
2009
, “
Development of an Intelligent Multisensor Chatter Detection System in Milling
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1704
1718
.
26.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
.
27.
Delio
,
T.
,
Tlusty
,
J.
, and
Smith
,
S.
,
1992
, “
Use of Audio Signals for Chatter Detection and Control
,”
ASME J. Eng. Ind.
,
114
(
2
), pp.
146
157
.
28.
Kiss
,
A. K.
,
Hajdu
,
D.
,
Bachrathy
,
D.
,
Stepan
,
G.
, and
Dombovari
,
Z.
,
2022
, “
In-Process Impulse Response of Milling to Identify Stability Properties by Signal Processing
,”
J. Sound Vib.
,
527
, p.
116849
.
29.
Bamieh
,
B. A.
, and
Pearson
,
J. B.
,
1992
, “
A General Framework for Linear Periodic Systems With Applications to H/sup Infinity/Sampled-Data Control
,”
IEEE Trans. Autom. Contr.
,
37
(
4
), pp.
418
435
.
30.
Bamieh
,
B.
,
Pearson
,
J. B.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
,
1991
, “
A Lifting Technique for Linear Periodic Systems With Applications to Sampled-Data Control
,”
Syst. Control Lett.
,
17
(
2
), pp.
79
88
.
31.
Allen
,
M. S.
,
2009
, “
Frequency-Domain Identification of Linear Time-Periodic Systems Using LTI Techniques
,”
J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041004
.
32.
Ulker
,
F.
,
2011
, “A New Framework for Helicopter Vibration Suppression: Time-Periodic System Identification and Controller Design,” Doctor of Philosophy, Carleton University, Ottawa, ON.
33.
Hajdu
,
D.
,
Borgioli
,
F.
,
Michiels
,
W.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2020
, “
Robust Stability of Milling Operations Based on Pseudospectral Approach
,”
Int. J. Mach. Tools Manuf.
,
149
, p.
103516
.
34.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer
,
New York
.
35.
Hartung
,
F.
,
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2006
, “
Approximate Stability Charts for Milling Processes Using Semi-discretization
,”
Appl. Math. Comput.
,
174
(
1
), pp.
51
73
.
36.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P.
, and
Mann
,
B.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
.
37.
Budak
,
E.
,
Altintaß
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
You do not currently have access to this content.