Graphical Abstract Figure

Simulating Hot Deformation in AA2024/SiC Composites

Graphical Abstract Figure

Simulating Hot Deformation in AA2024/SiC Composites

Close modal

Abstract

The hot deformation behavior of AA2024/SiC composite was investigated by experimental and finite element simulation (FEM) methods. The influence of different particle volume fractions (VFs) and sizes on the mechanical behavior of AA2024/SiC composites was studied. An integrated numerical model was developed using a modified Johnson–Cook model for the AA2024 matrix implemented via VUHARD subroutine and the Johnson–Holmquist model 2 for the SiC particles. Simulations were performed at higher temperatures (673–753 K) and varying strain rates (0.01–1 s−1) within a random microstructure-based FEM framework using abaqus. The FEM results are in close agreement with the experimental data, particularly in the true stress–strain curves, indicating that the developed FEM model effectively captures the hot workability of AA2024/SiC composites under varying temperature conditions, SiC volume fractions, and particle sizes (PSs). The results showed that the reinforcement of SiC particles into the AA2024 matrix significantly improved its hot workability by reducing dislocation mobility. The flow stress of composites increased with SiC content and decreased with the reinforcement particle size. The composites reinforced with 5 µm SiC particles had a higher peak flow stress of 145.945 MPa than the others at 673 K and a strain rate of 1 s−1. Similarly, at constant temperature and strain rate, the peak flow stress of the composite material increased from 87 MPa to 145.945 MPa (PS = 5 µm at 673 K and strain rate 1 s−1) as the VF increased from 1% to 20%.

References

1.
Torralba
,
J. D.
,
Da Costa
,
C.
, and
Velasco
,
F.
,
2003
, “
P/M Aluminum Matrix Composites: An Overview
,”
J. Mater. Process. Technol.
,
133
(
1–2
), pp.
203
206
.
2.
Hassani
,
A.
,
Bagherpour
,
E.
, and
Qods
,
F.
,
2014
, “
Influence of Pores on Workability of Porous Al/SiC Composites Fabricated Through Powder Metallurgy + Mechanical Alloying
,”
J. Alloys Compd.
,
591
, pp.
132
142
.
3.
Muchhala
,
D.
,
Yadav
,
B. N.
,
Pandey
,
A.
,
Kumar
,
R.
,
Rudra
,
A.
,
Chilla
,
V.
, and
Mondal
,
D. P.
,
2022
, “
Effect of Temperature and Strain Rate on the Compressive Deformation Response of Closed-Cell Aluminium Hybrid Foams
,”
J. Alloys Compd.
,
898
, p.
162814
.
4.
Huang
,
Z. W.
,
McColl
,
I. R.
, and
Harris
,
S. J.
,
1996
, “
Notched Behaviour of a Silicon Carbide Particulate Reinforced Aluminium Alloy Matrix Composite
,”
Mater. Sci. Eng. A
,
215
(
1–2
), pp.
67
72
.
5.
Szczepanik
,
S.
, and
Lehnert
,
W.
,
1996
, “
The Formability of the Al-5% SiC Composite Obtained Using P/M Method
,”
J. Mater. Process. Technol.
,
60
(
1–4
), pp.
703
709
.
6.
Soliman
,
M.
,
El-Sabbagh
,
A.
,
Taha
,
M.
, and
Palkowski
,
H.
,
2013
, “
Hot Deformation Behavior of 6061 and 7108 Al-SiCp Composites
,”
J. Mater. Eng. Perform.
,
22
(
5
), pp.
1331
1340
.
7.
De Sanctis
,
A. M.
,
Evangelista
,
E.
,
Forcellese
,
A.
, and
Wang
,
Y. Z.
,
1996
, “
Hot Formability Studies on 359/SiC/20p and Their Application in Forging Optimisation
,”
Appl. Compos. Mater.
,
3
(
3
), pp.
179
198
.
8.
Neelima
,
P.
,
Narayana Murty
,
S. V. S.
, and
Chakravarthy
,
P.
,
2020
, “
Comparison of Prediction Capabilities of Flow Stress by Various Constitutive Equation Models for Hot Deformation of Aluminum Matrix Composites
,”
Mater. Perform. Charact.
,
9
(
2
), pp.
237
261
.
9.
Subramani
,
M.
,
Tzeng
,
Y. C.
,
Tseng
,
L. W.
,
Tsai
,
Y. K.
,
Chen
,
G. S.
,
Chung
,
C. Y.
, and
Huang
,
S. J.
,
2021
, “
Hot Deformation Behavior and Processing Map of AZ61/SiC Composites
,”
Mater. Today Commun.
,
29
, p.
102861
.
10.
Wang
,
Z.
,
Wang
,
A.
,
Xie
,
J.
, and
Liu
,
P.
,
2020
, “
Hot Deformation Behavior and Strain-Compensated Constitutive Equation of Nano-sized SiC Particle-Reinforced Al–Si Matrix Composites
,”
Materials
,
13
(
8
), p.
1812
.
11.
Abouelmagd
,
G.
,
2004
, “
Hot Deformation and Wear Resistance of P/M Aluminium Metal Matrix Composites
,”
J. Mater. Process. Technol.
,
155
, pp.
1395
1401
.
12.
Alaneme
,
K. K.
,
Babalola
,
S. A.
,
Chown
,
L. H.
, and
Bodunrin
,
M. O.
,
2020
, “
Hot Deformation Behaviour of Bamboo Leaf Ash-Silicon Carbide Hybrid Reinforced Aluminium Based Composite
,”
Manuf. Rev.
,
7
, p.
17
.
13.
Kumar
,
R. V.
,
Harichandran
,
R.
,
Vignesh
,
U.
,
Thangavel
,
M.
, and
Chandrasekhar
,
S.
,
2021
, “
Influence of Hot Extrusion on Strain Hardening Behaviour of Graphene Platelets Dispersed Aluminium Composites
,”
J. Alloys Compd.
,
855
, p.
157448
.
14.
Rudra
,
A.
,
Das
,
S.
, and
Dasgupta
,
R.
,
2019
, “
Constitutive Modeling for Hot Deformation Behavior of Al-5083+ SiC Composite
,”
J. Mater. Eng. Perform.
,
28
(
1
), pp.
87
99
.
15.
Narayanasamy
,
R.
,
Ramesh
,
T.
, and
Prabhakar
,
M.
,
2009
, “
Effect of Particle Size of SiC in Aluminium Matrix on Workability and Strain Hardening Behaviour of P/M Composite
,”
Mater. Sci. Eng. A
,
504
(
1–2
), pp.
13
23
.
16.
Wu
,
C.
,
Chen
,
S.
,
Tang
,
J.
,
Fu
,
D.
,
Teng
,
J.
, and
Jiang
,
F.
,
2023
, “
Hot Workability of the Multi-size SiC Particle-Reinforced 6013 Aluminum Matrix Composites
,”
Materials
,
16
(
2
), p.
796
.
17.
Hao
,
S. M.
, and
Xie
,
J. P.
,
2014
, “
Hot Deformation Behaviors of SiCp/2024 Aluminum Composites
,”
Adv. Mater. Res.
,
833
, pp.
271
275
.
18.
Tan
,
Z.
,
Pang
,
B.
,
Qin
,
D.
,
Shi
,
J.
, and
Gai
,
B.
,
2008
, “
The Compressive Properties of 2024Al Matrix Composites Reinforced With High Content SiC Particles at Various Strain Rates
,”
Mater. Sci. Eng. A
,
489
(
1–2
), pp.
302
309
.
19.
Song
,
Y.
,
Wang
,
A.
,
Ma
,
D.
,
Xie
,
J.
,
Wang
,
Z.
, and
Liu
,
P.
,
2020
, “
Hot-Deformation Behavior and Microstructure Evolution of the Dual-Scale SiCp/A356 Composites Based on Optimal Hot-Processing Parameters
,”
Materials
,
13
(
12
), p.
2825
.
20.
Serajzadeh
,
S.
,
Motlagh
,
S. R.
,
Mirbagheri
,
S. M. H.
, and
Akhgar
,
J. M.
,
2015
, “
Deformation Behavior of AA2017–SiCp in Warm and Hot Deformation Regions
,”
Mater. Des.
,
67
, pp.
318
323
.
21.
Ma
,
K.
,
Zhang
,
X.
,
Wang
,
D.
,
Wang
,
Q.
,
Liu
,
Z.
,
Xiao
,
B.
, and
Ma
,
Z.
,
2019
, “
Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites
,”
Acta Metall. Sin.
,
55
(
10
), pp.
1329
1337
.
22.
Lee
,
H.
,
Choi
,
J. H.
,
Jo
,
M. C.
,
Lee
,
D.
,
Shin
,
S.
,
Jo
,
I.
,
Lee
,
S.-K.
, and
Lee
,
S.
,
2018
, “
Effects of SiC Particulate Size on Dynamic Compressive Properties in 7075-T6 Al-SiCp Composites
,”
Mater. Sci. Eng. A
,
738
, pp.
412
419
.
23.
Li
,
X.
,
Liu
,
C.
,
Luo
,
K.
,
Ma
,
M.
, and
Liu
,
R.
,
2016
, “
Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering
,”
J. Mater. Sci. Technol.
,
32
(
4
), pp.
291
297
.
24.
Tabandeh-Khorshid
,
M.
,
Ferguson
,
J.
,
Schultz
,
B. F.
,
Kim
,
C.-S.
,
Cho
,
K.
, and
Rohatgi
,
P. K.
,
2016
, “
Strengthening Mechanisms of Graphene-and Al2O3-Reinforced Aluminum Nanocomposites Synthesized by Room Temperature Milling
,”
Mater. Des.
,
92
, pp.
79
87
.
25.
Vio
,
G. A.
,
Munk
,
D. J.
, and
Verstraete
,
D.
,
2018
, “
Transient Temperature Effects on the Aerothermoelastic Response of a Simple Wing
,”
Aerospace
,
5
(
3
), p.
71
.
26.
Du
,
J.
, and
Wei
,
Z.
,
2018
, “
Numerical Investigation of Thermocapillary-Induced Deposited Shape in Fused-Coating Additive Manufacturing Process of Aluminum Alloy
,”
J. Phys. Commun.
,
2
(
11
), p.
115013
.
27.
Zhou
,
L.
,
Wang
,
Y.
,
Ma
,
Z.
, and
Yu
,
X.
,
2014
, “
Finite Element and Experimental Studies of the Formation Mechanism of Edge Defects During Machining of SiCp/Al Composites
,”
Int. J. Mach. Tools Manuf.
,
84
, pp.
9
16
.
28.
Rasaee
,
S.
, and
Mirzaei
,
A. H.
,
2019
, “
Constitutive Modeling of 2024 Aluminum Alloy Based on the Johnson–Cook Model
,”
Trans. Indian Inst. Met.
,
72
(
4
), pp.
1023
1030
.
29.
Cronin
,
D. S.
,
Bui
,
K.
,
Kaufmann
,
C.
,
McIntosh
,
G.
,
Berstad
,
T.
, and
Cronin
,
D.
,
2003
, “
Implementation and Validation of the Johnson–Holmquist Ceramic Material Model in LS-Dyna
,”
Proceedings of the 4th European LS-DYNA Users Conference
,
Ulm, Germany
,
May 22–23
, pp.
47
60
.
30.
Gad
,
S. I.
,
Attia
,
M. A.
,
Hassan
,
M. A.
, and
El-Shafei
,
A. G.
,
2021
, “
Predictive Computational Model for Damage Behavior of Metal-Matrix Composites Emphasizing the Effect of Particle Size and Volume Fraction
,”
Materials
,
14
(
9
), p.
2143
.
31.
Zhou
,
J.
,
Lin
,
J.
,
Lu
,
M.
,
Jing
,
X.
,
Jin
,
Y.
, and
Song
,
D.
,
2021
, “
Analyzing the Effect of Particle Shape on Deformation Mechanism During Cutting Simulation of SiC P/Al Composites
,”
Micromachines
,
12
(
8
), p.
953
.
32.
Abaqus
,
G.
,
2011
, “
Abaqus 6.11
,”
Dassault Systemes Simulia Corporation
,
Providence, RI
, p.
3
.
33.
Hadavi
,
V.
,
Moreno
,
C. E.
, and
Papini
,
M.
,
2016
, “
Numerical and Experimental Analysis of Particle Fracture During Solid Particle Erosion, Part I: Modeling and Experimental Verification
,”
Wear
,
356
, pp.
135
145
.
34.
Shao
,
J.
,
Xiao
,
B.
,
Wang
,
Q.
,
Ma
,
Z.
, and
Yang
,
K.
,
2011
, “
An Enhanced FEM Model for Particle Size Dependent Flow Strengthening and Interface Damage in Particle Reinforced Metal Matrix Composites
,”
Compos. Sci. Technol.
,
71
(
1
), pp.
39
45
.
35.
Qu
,
S.
,
Siegmund
,
T.
,
Huang
,
Y.
,
Wu
,
P.
,
Zhang
,
F.
, and
Hwang
,
K.
,
2005
, “
A Study of Particle Size Effect and Interface Fracture in Aluminum Alloy Composite Via an Extended Conventional Theory of Mechanism-Based Strain-Gradient Plasticity
,”
Compos. Sci. Technol.
,
65
(
7–8
), pp.
1244
1253
.
36.
Kim
,
Y.
,
2017
, “Simulating the Mechanical Behavior of AL2024-T3 With Different Strain Rate and Temperature,” Final Project.
37.
Pradhan
,
S.
,
Barman
,
T. K.
,
Sahoo
,
P.
,
Sutradhar
,
G.
, and
Ghosh
,
S.
,
2016
, “
Tribological Behavior of Al-SiC Metal Matrix Composite in Acidic Medium
,”
Int. J. Eng. Technol.
,
8
, pp.
24
31
.
38.
Zhang
,
J.
,
Zhang
,
X.
,
Wang
,
Q.
,
Xiao
,
B.
, and
Ma
,
Z.
,
2018
, “
Simulations of Deformation and Damage Processes of SiCp/Al Composites During Tension
,”
J. Mater. Sci. Technol.
,
34
(
4
), pp.
627
634
.
39.
Zhang
,
L.
,
Wang
,
Q.
,
Liu
,
G.
,
Guo
,
W.
,
Jiang
,
H.
, and
Ding
,
W.
,
2017
, “
Effect of SiC Particles and the Particulate Size on the Hot Deformation and Processing Map of AZ91 Magnesium Matrix Composites
,”
Mater. Sci. Eng. A
,
707
, pp.
315
324
.
40.
Wu
,
H.-D.
,
Zhang
,
H.
,
Shuang
,
C.
, and
Fu
,
D.-F.
,
2015
, “
Flow Stress Behavior and Processing Map of Extruded 7075Al/SiC Particle Reinforced Composite Prepared by Spray Deposition During Hot Compression
,”
Trans. Nonferrous Met. Soc. China
,
25
(
3
), pp.
692
698
.
41.
Rajamuthamilselvan
,
M.
,
Ramanathan
,
S.
, and
Karthikeyan
,
R.
,
2010
, “
Processing Map for Hot Working of SiCp/7075 Al Composites
,”
Trans. Nonferrous Met. Soc. China
,
20
(
4
), pp.
668
674
.
42.
Zhang
,
Y.
,
Jiang
,
J.
,
Wang
,
Y.
,
Liu
,
Y.
, and
Huang
,
M.
,
2022
, “
Hot Deformation Behavior and Microstructure Evolution of Hot-Extruded 6A02 Aluminum Alloy
,”
Mater. Charact.
,
188
, p.
111908
.
43.
Snyder
,
D.
,
Chen
,
E. Y.
,
Chen
,
C. C.
, and
Tin
,
S.
,
2013
, “
Deformation Characteristics and Recrystallization Response of a 9310 Steel Alloy
,”
Metall. Mater. Trans. A
,
44
(
1
), pp.
479
493
.
44.
Chen
,
X.-M.
,
Lin
,
Y.
,
Wen
,
D.-X.
,
Zhang
,
J.-L.
, and
He
,
M.
,
2014
, “
Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation
,”
Mater. Des.
,
57
, pp.
568
577
.
45.
Rofman
,
O. V.
,
Mikhaylovskaya
,
A. V.
,
Kotov
,
A. D.
,
Mochugovskiy
,
A. G.
,
Mohamed
,
A. K.
,
Cheverikin
,
V. V.
, and
Short
,
M. P.
,
2020
, “
AA2024/SiC Metal Matrix Composites Simultaneously Improve Ductility and Cracking Resistance During Elevated Temperature Deformation
,”
Mater. Sci. Eng. A
,
790
, p.
139697
.
46.
Hao
,
S. M.
,
Xie
,
J. P.
,
Li
,
L. B.
,
Wang
,
A. Q.
,
Wang
,
W. Y.
, and
Li
,
J. W.
,
2016
, “
Hot Deformation Behaviors and Microstructure Evolution of SiCp/Al Composites
,”
Proc. Mater. Sci. Forum
,
849
, pp.
430
435
. www.scientific.net/MSF.849.430
47.
Wang
,
S.
,
Tang
,
Q.
,
Li
,
D.
,
Zou
,
J.
,
Zeng
,
X.
,
Ouyang
,
Q.
, and
Ding
,
W.
,
2015
, “
The Hot Workability of SiCp/2024 Al Composite by Stir Casting
,”
Mater. Manuf. Process.
,
30
(
5
), pp.
624
630
.
48.
Ko
,
B.-C.
, and
Yoo
,
Y. C.
,
2000
, “
Processing Map for Hot Working AA2024 Composites Reinforced With SiC Particle
,”
Proc. Mater. Sci. Forum
,
331–337
, pp.
1139
1144
. www.scientific.net/MSF.331-337.1139
49.
Panda
,
R.
,
Gupta
,
R.
,
Mandal
,
A.
, and
Chakravarthy
,
P.
,
2020
, “
Hot Deformation Behavior of AA2024 With and Without In Situ Titanium Diboride Dispersoids
,”
Mater. Perform. Charact.
,
9
(
2
), pp.
188
201
.
50.
Li
,
H.
,
Fan
,
L.
,
Zhou
,
M.
,
Zhou
,
Y.
,
Jiang
,
K.
, and
Chen
,
Y.
,
2020
, “
Hot Compression Deformation and Activation Energy of Nanohybrid-Reinforced AZ80 Magnesium Matrix Composite
,”
Metals
,
10
(
1
), p.
119
.
51.
Babalola
,
S. A.
,
Alaneme
,
K. K.
,
Oke
,
S. R.
,
Chown
,
L. H.
,
Maledi
,
N. B.
, and
Bodunrin
,
M. O.
,
2021
, “
Hot Compression Behaviour and Microstructural Evolution in Aluminium Based Composites: An Assessment of the Role of Reinforcements and Deformation Parameters
,”
Manuf. Rev.
,
8
, p.
6
.
52.
Chen
,
S.
,
Teng
,
J.
,
Luo
,
H.
,
Wang
,
Y.
, and
Zhang
,
H.
,
2017
, “
Hot Deformation Characteristics and Mechanism of PM 8009Al/SiC Particle Reinforced Composites
,”
Mater. Sci. Eng. A
,
697
, pp.
194
202
.
53.
Zhao
,
Q.
,
Li
,
F.
,
Zhu
,
E.
,
Gopi
,
K.
,
Farah
,
S.
,
An
,
X.
,
Yao
,
K.
,
Li
,
J.
,
Hashmi
,
A. F.
, and
Liu
,
L.
,
2024
, “
Investigation on the Grain Structure Evolution and Abnormal Stress Increase of Al–Mg–Si Alloy During Hot Deformation
,”
Met. Mater. Int.
,
30
(
4
), pp.
967
989
.
54.
Hao
,
S.-M.
,
Xie
,
J.-P.
,
Wang
,
A.-Q.
,
Wang
,
W.-Y.
,
Li
,
J.-W.
, and
Sun
,
H.-L.
,
2014
, “
Hot Deformation Behaviors of 35% SiCp/2024Al Metal Matrix Composites
,”
Trans. Nonferrous Met. Soc. China
,
24
(
8
), pp.
2468
2474
.
55.
Song
,
Y.
,
Wang
,
A.
,
Ma
,
D.
,
Xie
,
J.
, and
Wang
,
W.
,
2023
, “
Dynamic Recrystallization Behavior and Nucleation Mechanism of Dual-Scale SiCp/A356 Composites Processed by P/M Method
,”
Nanotechnol. Rev.
,
12
(
1
), p.
20220506
.
56.
Zhao
,
Q.
,
Li
,
F.
,
Zhu
,
E.
,
Hashmi
,
A. F.
,
Niu
,
J.
, and
Gopi
,
K.
,
2024
, “
Understanding the Isothermal Compression Behavior of Al–Mg–Si Alloy Based on Hot Deformation Parameters and Instability Criteria
,”
Mater. Today Commun.
,
40
, p.
110074
.
57.
Dehnavi
,
A.
,
Ebrahimi
,
G. R.
, and
Golestanipour
,
M.
,
2020
, “
Effect of SiC Particles on Hot Deformation Behavior of Closed-Cell Al/SiCp Composite Foams
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
, pp.
1
8
.
58.
Bembalge
,
O. B.
, and
Panigrahi
,
S. K.
,
2020
, “
Hot Workability and Processing Map of Ultrafine-Grained Al/SiC Composite With Different Reinforcement Sizes Under Compressive and Tensile Modes
,”
Metall. Mater. Trans. A
,
51
(
12
), pp.
6679
6699
.
59.
Wang
,
D.
,
Zhu
,
Q.
,
Wei
,
Z.
,
Lin
,
B.
,
Jing
,
Y.
,
Shi
,
Y.
,
Misra
,
R. D. K.
, and
Li
,
J.
,
2022
, “
Hot Deformation Behaviors of AZ91 Magnesium Alloy: Constitutive Equation, ANN-Based Prediction, Processing Map and Microstructure Evolution
,”
J. Alloys Compd.
,
908
, p.
164580
.
60.
Fan
,
D.-G.
,
Deng
,
K.-K.
,
Wang
,
C.-J.
,
Nie
,
K.-B.
,
Shi
,
Q.-X.
, and
Liang
,
W.
,
2021
, “
Hot Deformation Behavior and Dynamic Recrystallization Mechanism of an Mg-5wt% Zn Alloy With Trace SiCp Addition
,”
J. Mater. Res. Technol.
,
10
, pp.
422
437
.
61.
Zhu
,
H.
,
Liu
,
J.
,
Wu
,
Y.
,
Zhang
,
Q.
,
Shi
,
Q.
,
Chen
,
Z.
,
Wang
,
L.
,
Zhang
,
F.
, and
Wang
,
H.
,
2020
, “
Hot Deformation Behavior and Workability of In-Situ TiB2/7050Al Composites Fabricated by Powder Metallurgy
,”
Materials
,
13
(
23
), p.
5319
.
62.
Wang
,
X.
,
Wu
,
K.
,
Zhang
,
H.
,
Huang
,
W.
,
Chang
,
H.
,
Gan
,
W.
,
Zheng
,
M.
, and
Peng
,
D.
,
2007
, “
Effect of Hot Extrusion on the Microstructure of a Particulate Reinforced Magnesium Matrix Composite
,”
Mater. Sci. Eng. A
,
465
(
1–2
), pp.
78
84
.
63.
Zhang
,
H.
,
Ramesh
,
K.
, and
Chin
,
E.
,
2004
, “
High Strain Rate Response of Aluminum 6092/B4C Composites
,”
Mater. Sci. Eng. A
,
384
(
1–2
), pp.
26
34
.
64.
Kou
,
S.-Q.
,
Gao
,
Y.-L.
,
Song
,
W.
,
Zhao
,
H.-L.
,
Guo
,
Y.-B.
,
Zhang
,
S.
, and
Yang
,
H.-Y.
,
2021
, “
Compression Properties and Work-Hardening Behavior of the NiAl Matrix Composite Reinforced With In Situ TaC Ceramic Particulates
,”
Vacuum
,
186
, p.
110035
.
65.
Borbely
,
A.
,
Biermann
,
H.
, and
Hartmann
,
O.
,
2001
, “
FE Investigation of the Effect of Particle Distribution on the Uniaxial Stress–Strain Behaviour of Particulate Reinforced Metal-Matrix Composites
,”
Mater. Sci. Eng. A
,
313
(
1–2
), pp.
34
45
.
66.
Tirtom
,
I.
,
Güden
,
M.
, and
Yıldız
,
H.
,
2008
, “
Simulation of the Strain Rate Sensitive Flow Behavior of SiC-Particulate Reinforced Aluminum Metal Matrix Composites
,”
Comput. Mater. Sci.
,
42
(
4
), pp.
570
578
.
67.
Ko
,
B.
,
Park
,
K.
, and
Yoo
,
Y.
,
1998
, “
Hot Deformation Behaviour of SiCp/2024 Aluminium Alloy Composites Reinforced With Various Sizes of SiCp
,”
Mater. Sci. Technol.
,
14
(
8
), pp.
765
769
.
68.
Chen
,
S.
,
Wu
,
C.
,
Bo
,
G.
,
Liu
,
H.
,
Tang
,
J.
,
Fu
,
D.
,
Teng
,
J.
, and
Jiang
,
F.
,
2023
, “
Revealing the Influence of SiC Particle Size on the Hot Workability of SiCp/6013 Aluminum Matrix Composites
,”
Materials
,
16
(
18
), p.
6292
.
You do not currently have access to this content.