Abstract

Single-fiber (monofilament, not twisted tow) high-temperature creep performance of refractory ceramic compositions is a fundamental material property that must be examined and understood for the successful deployment of ceramic matrix composite material systems in demanding applications. A novel creep testing approach was devised utilizing an innovative approach to fiber sample attachment and used to evaluate the creep behavior of Free Form Fibers’ LP-30SC and Nippon Carbon-based Hi-Nicalon Type S (HNS) silicon carbide fiber products. The testing apparatus, analytical basis for the creep calculations, including the sample gage length, and collected data are presented. Test conditions include a range of peak hold temperatures, from 1,300°C to 1,500°C, gas environments, and hold time patterns at the peak temperature. Clear differences in resistance to creep degradation were evident between the LP-30SC and HNS fibers, as the LP-30SC demonstrated strong resiliency to high temperature exposure while the HNS showed performance degradation consistent with oxidation attack.

References

1.
Naslain
R.
and
Christin
F.
, “
SiC-Matrix Composite Materials for Advanced Jet Engines
,”
Materials Research Society Bulletin
28
, no. 
9
(September
2003
):
654
658
, https://doi.org/10.1557/mrs2003.193
2.
Katoh
Y.
,
Sneed
L. L.
,
Henager Jr
C. H.
.,
Nozawa
T.
,
Hinkoki
T.
,
Iveković
A.
,
Novak
S.
, and
Gonzalez de Vincente
S. M.
, “
Current Status and Recent Research Achievements in SiC/SiC Composites
,”
Journal of Nuclear Materials
455
, nos. 
1–3
(December
2014
):
387
397
, https://doi.org/10.1016/j.jnucmat.2014.06.003
3.
DiCarlo
J. A.
,
Yun
H.-M.
,
Morscher
G. N.
, and
Bhatt
R. T.
, “
SiC/SiC Composites for 1200°C and Above
,” in
Handbook of Ceramic Composites
, ed.
Bansal
N. P.
(
Boston, MA
:
Springer
,
2005
),
77
98
.
4.
Ohnabe
H.
,
Masaki
S.
,
Onozuka
M.
,
Miyahara
K.
, and
Sasa
T.
, “
Potential Application of Ceramic Matrix Composites to Aero-Engine Components
,”
Composites Part A: Applied Science and Manufacturing
30
, no. 
4
(April
1999
):
489
496
, https://doi.org/10.1016/S1359-835X(98)00139-0
5.
Sha
J. J.
,
Nozawa
T.
,
Park
J. S.
,
Kotah
Y.
, and
Kohyama
A.
, “
Effect of Heat Treatment on the Tensile Strength and Creep Resistance of Advanced SiC Fibers
,”
Journal of Nuclear Materials
329–333
(August
2004
):
592
596
, https://doi.org/10.1016/j.jnucmat.2004.04.123
6.
Yun
H. M.
and
DiCarlo
J. A.
, “
Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers
,” in
23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures, Vol. 20
(
Hoboken, NJ
:
Wiley
,
1999
),
259
272
.
7.
DiCarlo
J. A.
, “
Creep Limitations of Current Polycrystalline Ceramic Fibers
,”
Composites Science and Technology
51
, no. 
2
(January
1994
):
213
222
, https://doi.org/10.1016/0266-3538(94)90191-0
8.
Sha
J. J.
,
Hinoki
T.
, and
Kohyama
A.
, “
Thermal and Mechanical Stabilities of Hi-Nicalon SiC Fiber under Annealing and Creep in Various Oxygen Partial Pressures
,”
Corrosion Science
50
, no. 
11
(November
2008
):
3132
3138
, https://doi.org/10.1016/j.corsci.2008.08.003
9.
Larson
K.
,
Williams
K.
,
Maxwell
J.
, and
Boman
M.
, “
Kinetics of Laser-Assisted Single Crystal Growth of Tungsten Rods
,”
Journal de Physique
9
, no. 
8
(September
1999
):
785
789
, https://doi.org/10.1051/jp4:1999899
10.
Boman
M.
and
Bauerle
D.
, “
Laser-Assisted Chemical Vapor Deposition of Boron
,”
Journal of the Chinese Chemical Society
42
, no. 
2
(April
1995
):
405
411
, https://doi.org/10.1002/jccs.199500054
11.
Williams
K. L.
,
Köhler
J.
, and
Boman
M.
, “
Fabrication and Mechanical Characterization of LCVD-Deposited Carbon Micro-Springs
,”
Sensors and Actuators, A: Physical
130–131
(August
2006
):
358
364
, https://doi.org/10.1016/j.sna.2005.10.022
12.
Goduguchinta
R.
and
Pegna
J.
, “
Position Dependence of Growth Rate in Convection-Enhanced Laser CVD of Carbon Rods
,”
Applied Physics A: Materials Science & Processing
88
, no. 
2
(August
2007
):
329
332
, https://doi.org/10.1007/s00339-007-3934-8
13.
DiCarlo
J. A.
,
Creep of Chemically Vapor Deposited SiC Fibers, NASA Contractor Report # 86897
(
1984
).
14.
Sauder
C.
and
Lamon
J.
, “
Tensile Creep Behavior of SiC-Based Fibers with Low Oxygen Content
,”
Journal of the American Ceramic Society
90
, no. 
4
(April
2007
):
1146
1156
, https://doi.org/10.1111/j.1551-2916.2007.01535.x
15.
Zimmerman
R. S.
and
Adams
D. F.
,
Static Tensile and Tensile Creep Testing of Five Ceramic Fibers at Elevated Temperatures, NASA Contractor Report # 177525
(Moffett Field, CA:
National Aeronautics and Space Administration
,
1989
).
16.
Sprinkle
K. B.
, “
Creep of Sylramic-iBN Fiber Tows at Elevated Temperature in Air and in Silicic-Acid Saturated Steam
” (master’s thesis,
Air Force Institute of Technology
,
2015
).
17.
Steffens
B. R.
, “
Creep of Hi-Nicalon S Ceramic Fiber Tows at Elevated Temperature in Air and in Steam
” (master’s thesis,
Air Force Institute of Technology
,
2012
).
18.
Roberston
S. J.
, “
Creep of Hi-Nicalon S Ceramic Fiber Tows at 800°C in Air and in Silicic Acid-Saturated Steam
” (PhD diss.,
Air Force Institute of Technology
,
2015
).
19.
Morscher
G. N.
and
DiCarlo
J. A.
, “
A Simple Test for Thermomechanical Evaluation of Ceramics Fibers
,”
Journal of the American Ceramic Society
75
, no. 
1
(January
1992
):
136
140
, https://doi.org/10.1111/j.1151-2916.1992.tb05455.x
20.
DiCarlo
J. A.
and
Morscher
G. N.
,
Creep and Stress Relaxation Modeling of Polycrystalline Ceramic Fibers, NASA Contractor Report # 105394
(Washington, DC: National Aeronautics and Space Administration,
1994
).
21.
Serizawa
H.
,
Lewinsohn
C. A.
,
Youngblood
G. E.
,
Jones
R. H.
,
Johnston
D. E.
, and
Kohyama
A.
, “
Evaluation of Advanced SiC Fibers for Reinforcement of CMC
” (paper presentation,
1999 International Conference on Composite Materials/ICCM-12
,
Paris, France
, July 5–9,
1999
).
22.
Patel
D.
and
Koyanagi
T.
, “
High-Temperature Creep Properties of SiC Fibers with Different Compositions
” (paper presentation,
2018 Topical Meeting on the Technology of Fusion Energy
,
Orlando, FL
, November
11
15
,
2019
).
23.
Harrison
S.
,
Pegna
J.
,
Schneiter
J. L.
,
Williams
K. L.
, and
Goduguchinta
R. K.
, “
Laser-Printed Ceramic Fiber Ribbons: Properties and Applications
,” in
40th International Conference and Exposition on Advanced Ceramics and Composites
(
Hoboken, NJ
:
Wiley
,
2017
),
61
71
.
24.
Schneiter
J. L.
,
Pegna
J.
,
Goduguchinta
R.
,
Williams
K. L.
, and
Harrison
S. L.
. Radially graded fully dense inorganic filaments for enhanced strength and creep resistance. U.S. Patent 9,938,393, filed January 23, 2015, and issued April 10,
2018
.
25.
Singh
G.
,
Terrani
K.
, and
Katoh
Y.
, “
Thermo-Mechanical Assessment of Full SiC/SiC Composite Cladding for LWR Applications with Sensitivity Analysis
,”
Journal of Nuclear Materials
499
(February
2018
):
126
143
, https://doi.org/10.1016/j.jnucmat.2017.11.004
27.
Rosenhow
W. M.
and
Choi
H.
,
Heat, Mass, and Momentum Transfer
(
Englewood Cliffs, NJ
:
Prentice-Hall
,
1961
).
28.
Zhu
B.
,
Wang
R.
,
Harrison
S.
,
Williams
K.
,
Goduguchinta
R.
,
Schneiter
J.
,
Pegna
J.
,
Vaaler
E.
, and
Wang
X.
, “
Thermal Conductivity of SiC Microwires: Effect of Temperature and Structural Domain Size Uncovered by 0 K limit Phonon Scattering
,”
Ceramics International
44
, no. 
10
(July
2018
):
11218
11224
, https://doi.org/10.1016/j.ceramint.2018.03.161
29.
Xing
C.
,
Munro
T.
,
Jensen
C.
,
White
B.
,
Ban
H.
,
Copeland
C. G.
, and
Lewis
R. V.
, “
Thermophysical Property Measurement of Electrically Nonconductive Fibers by the Electrothermal Technique
,”
Measurement Science and Technology
25
, no. 
11
(October
2014
): 115604, https://doi.org/10.1088/0957-0233/25/11/115604
30.
NGS Advanced Fibers Co. “
Product
,” NGS Advanced Fibers Co., 2020, http://web.archive.org/web/20200217051033/http://ngs-advanced-fibers.com/eng/item/
This content is only available via PDF.
You do not currently have access to this content.