Abstract

Diamond-like carbon (DLC) coatings are well known for their excellent adhesion to silicon wafers. However, they often exhibit poor adhesion properties on metallic substrates. Interlayers and metallic doping help improve the adhesion properties of DLC coatings on metallic substrates. In this study, both nano-scratch and micro-scratch were performed on chromium nitride (CrN)/DLC and tungsten doped DLC coating (DLC-W) coatings deposited on 920 HV DIN 16CrMn martensitic valve tappets. Nano-scratch was performed at 300 mN in a Hysitron nano-indenter, whereas micro-scratch was performed at 1–50 N using a CETR-UMT tribometer. The 3-D images and 2-D longitudinal and transversal profiles of the nano-scratch and micro-scratch were obtained using atomic force microscopy and 3-D optical profilometry, respectively. The scratch hardness equation was used to estimate the scratch hardness of the coatings. Experimental and theoretical values for the volume removed and the specific wear rates for the micro-scratch and nano-scratch of CrN/DLC and DLC-W coatings were estimated. The coefficients of friction (COF) obtained during the micro-scratch tests were very similar for both coatings. The same happened with the COF measured during the nano-scratch. The maximum COF in both cases reached 0.14. The wider and deeper penetration of the indenter for the DLC-W coating was mainly due to the lower hardness of the multilayered coating, composed of alternating nanometric thick amorphous carbon and tungsten carbide (WC) layers. The greater wear observed for the DLC-W coating system could also be attributed to the abrasive effect of detached WC nanoparticles abrasively acting during the contact of the diamond tip with the DLC coating. The experimental and theoretical values for the volume removed and the specific wear rates indicate a lower volume removal and specific wear rate for CrN/DLC because of higher hardness and better load-carrying capacity, contrary to DLC-W, which presents higher volume removal and specific wear rate because of its lower hardness.

References

1.
Sniderman
D.
, “
How Coatings and Engineering Are Shaping Tomorrow’s World
,”
Tribology & Lubrication Technology
, June
2016
, http:///web.archive.org/web/20230926132013/https://www.stle.org/files/TLTArchives/2016/06_June/Feature.aspx
2.
Holmberg
K.
,
Andersson
P.
, and
Erdemir
A.
, “
Global Energy Consumption due to Friction in Passenger Cars
,”
Tribology International
47
(March
2012
):
221
234
, https://doi.org/10.1016/j.triboint.2011.11.022
3.
Mori
H.
and
Tachikawa
H.
, “
Increased Adhesion of Diamond-Like Carbon–Si Coatings and Its Tribological Properties
,”
Surface and Coatings Technology
149
, nos. 
2–3
(January
2002
):
224
230
, https://doi.org/10.1016/S0257-8972(01)01449-9
4.
Sheeja
D.
,
Tay
B. K.
,
Leong
K. W.
, and
Lee
C. H.
, “
Effect of Film Thickness on the Stress and Adhesion of Diamond-Like Carbon Coatings
,”
Diamond and Related Materials
11
, no. 
9
(September
2002
):
1643
1647
, https://doi.org/10.1016/S0925-9635(02)00109-7
5.
Morand
G.
,
Chevallier
P.
,
Bonilla-Gameros
L.
,
Turgeon
S.
,
Cloutier
M.
,
da Silva Pires
M.
,
Sarkissian
A.
,
Tatoulian
M.
,
Houssiau
L.
, and
Mantovani
D.
, “
On the Adhesion of Diamond-Like Carbon Coatings Deposited by Low-Pressure Plasma on 316L Stainless Steel
,”
Surface and Interface Analysis
53
, no. 
7
(July
2021
):
658
671
, https://doi.org/10.1002/sia.6953
6.
Dearnley
P. A.
,
Neville
A.
,
Turner
S.
,
Scheibe
H.-J.
,
Tietema
R.
,
Tap
R.
,
Stüber
M.
,
Hovsepian
P.
,
Layyous
A.
, and
Stenbom
B.
, “
Coatings Tribology Drivers for High Density Plasma Technologies
,”
Surface Engineering
26
, nos. 
1–2
(
2010
):
80
96
, https://doi.org/10.1179/174329409X451218
7.
Borges
C. F. M.
,
Pfender
E.
, and
Heberlein
J.
, “
Influence of Nitrided and Carbonitrided Interlayers on Enhanced Nucleation of Diamond on Stainless Steel 304
,”
Diamond and Related Materials
10
, no. 
11
(November
2001
):
1983
1990
, https://doi.org/10.1016/S0925-9635(01)00465-4
8.
Kolawole
F. O.
,
Kolade
O. S.
,
Bello
S. A.
,
Kolawole
S. K.
,
Ayeni
A. T.
,
Elijah
T. F.
,
Borisade
S. G.
, and
Tschiptschin
A. P.
, “
The Improvement of Diamond-Like Carbon Coatings for Tribological and Tribo-corrosion Applications in Automobile Engines: An Updated Review Study
,”
The International Journal of Advanced Manufacturing Technology
126
, no. 
5
(May
2023
):
2295
2322
, https://doi.org/10.1007/s00170-023-11282-8
9.
Delfani-Abbariki
S.
,
Abdollah-zadeh
A.
,
Hadavi
S. M. M.
,
Abedi
M.
, and
Derakhshandeh
S. M. R.
, “
Enhancing the Adhesion of Diamond-Like Carbon Films to Steel Substrates Using Silicon-Containing Interlayers
,”
Surface and Coatings Technology
350
(September
2018
):
74
83
, https://doi.org/10.1016/j.surfcoat.2018.06.055
10.
Zhou
Y.
,
Li
L.
,
Chen
Z.
,
Rao
L.
,
Ren
X.
,
Xing
X.
, and
Yang
Q.
, “
Accidental Damaged Diamond-Like Carbon Coating by Prefabricated Scratches: Experimental Exploration on Anticorrosion and Tribological Performances
,”
Diamond and Related Materials
111
(January
2021
): 108181, https://doi.org/10.1016/j.diamond.2020.108181
11.
Schmid
G.
, “
Large Metal Clusters and Colloids – Metals in the Embryonic State
,” in
Structure, Dynamics and Properties of Dispersed Colloidal Systems
, ed.
Rehage
H.
and
Peschel
G.
(
Heidelberg, Germany
:
Steinkopff
,
1998
),
52
57
, https://doi.org/10.1007/BFb0118109
12.
Wang
A.-Y.
,
Lee
K.-R.
,
Ahn
J.-P.
, and
Han
J. H.
, “
Structure and Mechanical Properties of W Incorporated Diamond-Like Carbon Films Prepared by a Hybrid Ion Beam Deposition Technique
,”
Carbon
44
, no. 
9
(August
2006
):
1826
1832
, https://doi.org/10.1016/j.carbon.2005.12.045
13.
Shirakura
A.
,
Nakaya
M.
,
Koga
Y.
,
Kodama
H.
,
Hasebe
T.
, and
Suzuki
T.
, “
Diamond-Like Carbon Films for PET Bottles and Medical Applications
,”
Thin Solid Films
494
, nos. 
1–2
(January
2006
):
84
91
, https://doi.org/10.1016/j.tsf.2005.08.366
14.
Takahara
Y.
,
Kondo
J. N.
,
Takata
T.
,
Lu
D.
, and
Domen
K.
, “
Mesoporous Tantalum Oxide. 1. Characterization and Photocatalytic Activity for the Overall Water Decomposition
,”
Chemistry of Materials
13
, no. 
4
(April
2001
):
1194
1199
, https://doi.org/10.1021/cm000572i
15.
Cemin
F.
,
Boeira
C. D.
, and
Figueroa
C. A.
, “
On the Understanding of the Silicon-Containing Adhesion Interlayer in DLC Deposited on Steel
,”
Tribology International
94
(February
2016
):
464
469
, https://doi.org/10.1016/j.triboint.2015.09.044
16.
Madej
M.
, “
The Effect of TiN and CrN Interlayers on the Tribological Behavior of DLC Coatings
,”
Wear
317
, nos. 
1–2
(September
2014
):
179
187
, https://doi.org/10.1016/j.wear.2014.05.008
17.
Wu
G.
,
Sun
L.
,
Dai
W.
,
Song
L.
, and
Wang
A.
, “
Influence of Interlayers on Corrosion Resistance of Diamond-Like Carbon Coating on Magnesium Alloy
,”
Surface and Coatings Technology
204
, no. 
14
(April
2010
):
2193
2196
, https://doi.org/10.1016/j.surfcoat.2009.12.009
18.
Kasiorowski
T.
,
Lin
J.
,
Soares
P.
,
Lepienski
C. M.
,
Neitzke
C. A.
,
de Souza
G. B.
, and
Torres
R. D.
, “
Microstructural and Tribological Characterization of DLC Coatings Deposited by Plasma Enhanced Techniques on Steel Substrates
,”
Surface and Coatings Technology
389
(May
2020
): 125615, https://doi.org/10.1016/j.surfcoat.2020.125615
19.
Bewilogua
K.
and
Hofmann
D.
, “
History of Diamond-Like Carbon Films – From First Experiments to Worldwide Applications
,”
Surface and Coatings Technology
242
(March
2014
):
214
225
, https://doi.org/10.1016/j.surfcoat.2014.01.031
20.
Mobarak
H. M.
and
Chowdhury
M.
, “
Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H) DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil
,”
Tribology in Industry
36
, no. 
2
(
2014
):
163
171
.
21.
Abdullah Tasdemir
H.
,
Wakayama
M.
,
Tokoroyama
T.
,
Kousaka
H.
,
Umehara
N.
,
Mabuchi
Y.
, and
Higuchi
T.
, “
The Effect of Oil Temperature and Additive Concentration on the Wear of Non-hydrogenated DLC Coating
,”
Tribology International
77
(September
2014
):
65
71
, https://doi.org/10.1016/j.triboint.2014.04.015
22.
Podgornik
B.
,
Jacobson
S.
, and
Hogmark
S.
, “
DLC Coating of Boundary Lubricated Components—Advantages of Coating One of the Contact Surfaces Rather than Both or None
,”
Tribology International
36
, no. 
11
(November
2003
):
843
849
, https://doi.org/10.1016/S0301-679X(03)00102-6
23.
Fu
R. K. Y.
,
Mei
Y. F.
,
Fu
M. Y.
,
Liu
X. Y.
, and
Chu
P. K.
, “
Thermal Stability of Metal-Doped Diamond-Like Carbon Fabricated by Dual Plasma Deposition
,”
Diamond and Related Materials
14
, no. 
9
(September
2005
):
1489
1493
, https://doi.org/10.1016/j.diamond.2005.03.006
24.
Hovsepian
P. E.
,
Mandal
P.
,
Ehiasarian
A. P.
,
Sáfrán
G.
,
Tietema
R.
, and
Doerwald
D.
, “
Friction and Wear Behaviour of Mo-W Doped Carbon-Based Coating during Boundary Lubricated Sliding
,”
Applied Surface Science
366
(March
2016
):
260
274
, https://doi.org/10.1016/j.apsusc.2016.01.007
25.
Müller
I. C.
,
Sharp
J.
,
Rainforth
W. M.
,
Hovsepian
P.
, and
Ehiasarian
A.
, “
Tribological Response and Characterization of Mo–W Doped DLC Coating
,”
Wear
376–377
, Part B (April
2017
):
1622
1629
, https://doi.org/10.1016/j.wear.2016.11.036
26.
Mutafov
P.
,
Lanigan
J.
,
Neville
A.
,
Cavaleiro
A.
, and
Polcar
T.
, “
DLC-W Coatings Tested in Combustion Engine – Frictional and Wear Analysis
,”
Surface and Coatings Technology
260
(December
2014
):
284
289
, https://doi.org/10.1016/j.surfcoat.2014.06.072
27.
Tang
X. S.
,
Wang
H. J.
,
Feng
L.
,
Shao
L. X.
, and
Zou
C. W.
, “
Mo Doped DLC Nanocomposite Coatings with Improved Mechanical and Blood Compatibility Properties
,”
Applied Surface Science
311
(August
2014
):
758
762
, https://doi.org/10.1016/j.apsusc.2014.05.155
28.
Banerji
A.
,
Bhowmick
S.
, and
Alpas
A. T.
, “
High Temperature Tribological Behavior of W Containing Diamond-Like Carbon (DLC) Coating against Titanium Alloys
,”
Surface and Coatings Technology
241
(February
2014
):
93
104
, https://doi.org/10.1016/j.surfcoat.2013.10.075
29.
Bhowmick
S.
,
Banerji
A.
, and
Alpas
A. T.
, “
Tribological Behaviour of W-DLC against an Aluminium Alloy Subjected to Lubricated Sliding
,”
Tribology in Industry
37
, no. 
3
(
2015
):
277
283
.
30.
Kržan
B.
,
Novotny-Farkas
F.
, and
Vižintin
J.
, “
Tribological Behavior of Tungsten-Doped DLC Coating under Oil Lubrication
,”
Tribology International
42
, no. 
2
(February
2009
):
229
235
, https://doi.org/10.1016/j.triboint.2008.06.011
31.
Evaristo
M.
,
Fernandes
F.
, and
Cavaleiro
A.
, “
Room and High Temperature Tribological Behaviour of W-DLC Coatings Produced by DCMS and Hybrid DCMS-HiPIMS Configuration
,”
Coatings
10
, no. 
4
(April
2020
): 319, https://doi.org/10.3390/coatings10040319
32.
Pei
Y. T.
,
Bui
X. L.
,
Zhou
X. B.
, and
De Hosson
J. T. M.
, “
Tribological Behavior of W-DLC Coated Rubber Seals
,”
Surface and Coatings Technology
202
, no. 
9
(February
2008
):
1869
1875
, https://doi.org/10.1016/j.surfcoat.2007.08.013
33.
Kolawole
F. O.
,
Ramirez
M. A.
,
Kolawole
S. K.
,
Varela
L. B.
, and
Tschiptschin
A. P.
, “
Deposition and Characterization of Molybdenum Oxide (MoO3) Nanoparticles Incorporated Diamond-Like Carbon Coatings Using Pulsed-DC PECVD
,”
Materials Letters
278
(November
2020
): 128420, https://doi.org/10.1016/j.matlet.2020.128420
34.
Kolawole
F. O.
,
Kolawole
S. K.
,
Varela
L. B.
,
Kraszczuk
A.
,
Ramirez
M. A.
, and
Tschiptschin
A. P.
, “
Effect of Substrate Surface Roughness on the Tribological Properties of dlc-h Coatings on Tappet Valve
,”
Tribology in Industry
43
, no. 
2
(
2021
):
189
199
, https://doi.org/10.24874/ti.927.07.20.11
35.
Kolawole
F. O.
,
Varela
L. B.
,
Kolawole
S. K.
,
Ramirez
M. A.
, and
Tschiptschin
A. P.
, “
Weak Adhesion and Delamination of Hydrogenated Diamond Like Carbon Coating on a Rough Surface of Tappet Valve Substrate
,”
IOP Conference Series: Materials Science and Engineering
689
(
2019
): 012001, https://doi.org/10.1088/1757-899X/689/1/012001
36.
Kolawole
F. O.
,
Varela
L. B.
,
Kolawole
S. K.
,
Ramirez
M. A.
, and
Tschiptschin
A. P.
, “
Deposition and Characterization of Tungsten Oxide (WO3) Nanoparticles Incorporated Diamond-Like Carbon Coatings Using Pulsed-DC PECVD
,”
Materials Letters
282
(January
2021
): 128645, https://doi.org/10.1016/j.matlet.2020.128645
37.
Beake
B. D.
,
Liskiewicz
T. W.
,
Vishnyakov
V. M.
, and
Davies
M. I.
, “
Development of DLC Coating Architectures for Demanding Functional Surface Applications through Nano- and Micro-Mechanical Testing
,”
Surface and Coatings Technology
284
(December
2015
):
334
343
, https://doi.org/10.1016/j.surfcoat.2015.05.050
38.
Shahsavari
F.
,
Ehteshamzadeh
M.
,
Naimi-Jamal
M. R.
, and
Irannejad
A.
, “
Nanoindentation and Nanoscratch Behaviors of DLC Films Growth on Different Thickness of Cr Nanolayers
,”
Diamond and Related Materials
70
(November
2016
):
76
82
, https://doi.org/10.1016/j.diamond.2016.10.003
39.
Zhang
T. H.
and
Huan
Y.
, “
Nanoindentation and Nanoscratch Behaviors of DLC Coatings on Different Steel Substrates
,”
Composites Science and Technology
65
, no. 
9
(July
2005
):
1409
1413
, https://doi.org/10.1016/j.compscitech.2004.12.011
40.
Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing
, ASTM C1624-05(2015) (West Conshohocken, PA:
ASTM International
, approved January 1,
2015
), https://doi.org/10.1520/C1624-05R15
41.
Sundararajan
G.
and
Roy
M.
, “
Hardness Testing
,” in
Encyclopedia of Materials: Science and Technology (Second Edition)
(
Oxford, UK
:
Pergamon Press
,
2001
),
3728
3736
, https://doi.org/10.1016/B0-08-043152-6/00665-3
42.
Seriacopi
V.
,
Prados
E. F.
,
Fukumasu
N. K.
,
Souza
R. M.
, and
Machado
I. F.
, “
Mechanical Behavior and Abrasive Mechanism Mapping Applied to Micro-Scratch Tests on Homogeneous and Heterogeneous Materials: FEM and Experimental Analyses
,”
Wear
450–451
(June
2020
): 203240, https://doi.org/10.1016/j.wear.2020.203240
43.
Li
D.
,
Scratch Hardness Measurement Using Tribometer
(
Irvine, CA
:
Nanovea
,
2014
).
44.
Tschiptschin
A. P.
, “
Duplex Coatings
,” in
Encyclopedia of Tribology
, ed.
Wang
Q. J.
and
Chung
Y.-W.
(
Boston, MA
:
Springer
,
2013
),
794
800
. https://doi.org/10.1007/978-0-387-92897-5_694
45.
Nemati
N.
,
Bozorg
M.
,
Penkov
O. V.
,
Shin
D. G.
,
Sadighzadeh
A.
, and
Kim
D. E.
, “
Functional Multi-nanolayer Coatings of Amorphous Carbon/Tungsten Carbide with Exceptional Mechanical Durability and Corrosion Resistance
,”
ACS Applied Materials & Interfaces
9
, no. 
35
(September
2017
):
30149
30160
, https://doi.org/10.1021/acsami.7b08565
46.
Nledenqvist
P.
and
Hogmark
S.
, “
Experiences from Scratch Testing of Tribological PVD Coatings
,”
Tribology International
30
, no. 
7
(July
1997
):
507
516
, https://doi.org/10.1016/s0301-679x(97)00014-5
47.
Gómez
I.
,
Claver
A.
,
Santiago
J. A.
,
Fernandez
I.
,
Palacio
J. F.
,
Diaz
C.
,
Mändl
S.
, and
Garcia
J. A.
, “
Improved Adhesion of the DLC Coating Using HiPIMS with Positive Pulses and Plasma Immersion Pretreatment
,”
Coatings
11
, no. 
9
(September
2021
): 1070, https://doi.org/10.3390/coatings11091070
48.
Cao
L.
,
Liu
J.
,
Wan
Y.
, and
Pu
J.
, “
Corrosion and Tribocorrosion Behavior of W Doped DLC Coating in Artificial Seawater
,”
Diamond and Related Materials
109
(November
2020
): 108019, https://doi.org/10.1016/j.diamond.2020.108019
49.
Vijai Bharathy
P.
,
Yang
Q.
,
Kiran
M. S. R. N.
,
Rha
J.
,
Nataraj
D.
, and
Mangalaraj
D.
, “
Reactive Biased Target Ion Beam Deposited W-DLC Nanocomposite Thin Films − Microstructure and Its Mechanical Properties
,”
Diamond and Related Materials
23
(March
2012
):
34
43
, https://doi.org/10.1016/j.diamond.2011.12.016
50.
Bull
S. J.
, “
Failure Modes in Scratch Adhesion Testing
,”
Surface and Coatings Technology
50
, no. 
1
(
1991
):
25
32
, https://doi.org/10.1016/0257-8972(91)90188-3
51.
Malkow
T.
and
Bull
S. J.
, “
Hardness Measurements on Thin IBAD CNx Films – A Comparative Study
,”
Surface and Coatings Technology
137
, nos. 
2–3
(March
2001
):
197
204
, https://doi.org/10.1016/S0257-8972(00)01101-4
52.
Burnett
P. J.
and
Rickerby
D. S.
, “
The Relationship between Hardness and Scratch Adhesion
,”
Thin Solid Films
154
, nos. 
1–2
(November
1987
):
403
416
, https://doi.org/10.1016/0040-6090(87)90382-8
53.
Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus
, ASTM G171-03(2009)e1 (West Conshohocken, PA:
ASTM International
, approved May 1,
2009
), https://doi.org/10.1520/G0171-03R09e01
54.
Fukumasu
N. K.
,
Bernardes
C. F.
,
Ramirez
M. A.
,
Trava-Airoldi
V. J.
,
Souza
R. M.
, and
Machado
I. F.
, “
Local Transformation of Amorphous Hydrogenated Carbon Coating Induced by High Contact Pressure
,”
Tribology International
124
(August
2018
):
200
208
, https://doi.org/10.1016/j.triboint.2018.04.006
This content is only available via PDF.
You do not currently have access to this content.