Abstract

This paper presents the outcome of the production of austempered gray iron (AGI) using forced air cooling as the quenching medium. Samples from Class 20 gray cast iron were prepared for micrographic analysis, x-ray diffraction (XRD) analysis, and mechanical testing. The prepared samples were austenitized at 920°C, soaked for 1 h, force air-cooled to the austempering temperature range of 250°C to 400°C (at 25°C intervals), held for another hour at the austempered temperature to allow for complete phase transformation, and then air-cooled to room temperature. The optical micrograph revealed a unique microstructure consisting of ferrite (α) and high carbon austenite (γHC) called ausferrite, the coarseness of which increases as the austempering temperatures increases. XRD analysis revealed only the peak of the α phase. The estimated effective particle size dα of this phase increases with an increase in austempering temperature. The results of mechanical tests showed significant increases in the tensile strength, hardness, toughness, and ductility of austempered samples of Class-20 grade gray cast iron. Conclusively, AGI has a unique combination of high strength and ductility that makes it suitable for the manufacture of parts in which high strength, high wear resistance, and high ductility are required.

References

1.
Sharma
,
P. C.
,
A Textbook of Production Technology
, 8th ed.,
S. Chand & Company Ltd.
,
New Delhi, India
,
2010
, p. 21.
2.
Rajan
,
T. V.
,
Sharma
,
C. P.
, and
Sharma
,
A.
,
Heat Treatment (Principles and Techniques)
, 2nd ed.,
Prentice-Hall of India Private Limited
,
New Delhi, India
,
1988
, p. 289.
3.
Ruff
,
G. F.
and
Doshi
,
B. K.
, “
Relation between Mechanical Properties and Graphite Structure in Cast Irons
,”
Modern Casting
, Vol.
1
,
1980
, p. 53.
4.
ASTM A48, “Standard Specification for Gray Iron Castings,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2001.
5.
Liu
,
J. H.
,
Hoo
,
X. Y.
,
Li
,
G. L.
, and
Liu
,
G.
, “
Microvoid Evaluation of Ferrite Ductile Iron under Strain
,”
Mater. Lett.
, Vol.
56
, No.
5
,
2002
, pp.
748
755
.
6.
Cueva
,
G.
,
Sinatora
,
A.
,
Guesser
,
W. L.
, and
Tschiptschin
,
A. P.
, “
Wear Resistance of Cast Irons Used in Brake Disc Rotors
,”
Wear
, Vol.
255
, Nos.
7–12
,
2003
, pp.
1256
1260
.
7.
Nofal
,
A. A.
and
Jekova
,
L.
, “
Novel Processing Techniques and Applications of Austempered Ductile Iron (Review)
,”
J. Univ. Chem. Technol. Metallurg.
, Vol.
44
, No.
3
,
2009
, pp.
213
228
.
8.
Lefevre
,
J.
and
Hayrynen
,
K. L.
, “
Austempered Materials for Powertrain Application
,”
Proceedings of the 26th ASM Heat Treating Society Conference
, Oct 31–Nov 2, Duke Energy Convention Centre, Cincinnati, Ohio, USA, 2011.
9.
Ferry
,
M.
and
Xu
,
W.
, “
Microstructural and Crystallographic Features of Ausferrite in As-cast Gray Iron
,”
Mater. Characterization
, Vol.
53
, No.
1
,
2004
, pp.
43
49
.
10.
Xu
,
W.
,
Ferry
,
M.
, and
Wang
,
Y.
, “
The Effect of Ausferrite Formation on the Mechanical Properties of Gray Iron
,”
Scr. Mater.
, Vol.
51
, No.
7
,
2004
, pp.
705
709
.
11.
Vadiraj
,
A.
,
Balachandran
,
G.
, and
Kamaraj
,
M.
, “
Structure and Property Studies on Austempered and As-cast Ausferritic Gray Cast Irons
,”
J. Mater. Eng. Perform.
, Vol.
19
, No.
7
,
2010
, pp.
976
983
.
12.
Vaško
,
A.
, “
Influence of Transformation Temperature on Structure and Mechanical Properties of Austempered Ductile Iron
,”
Acta Metallurgica Slovaca
, Vol.
17
, No.
1
,
2011
, pp.
45
50
.
13.
Kılıclı
,
V.
and
Erdogan
,
M.
, “
Tensile Properties of Partially Austenitized and Austempered Ductile Irons With Dual Matrix Structures
,”
Mater. Sci. Technol.
, Vol.
22
, No.
8
,
2006
, pp.
919
928
.
14.
Sahin
,
Y.
,
Erdogan
,
M.
, and
Kılıclı
,
V.
, “
Wear Behaviour of Austempered Ductile Irons With Dual Matrix Structures
,”
Mater. Sci. Eng. A
, Vol.
444
, Nos.
1–2
,
2007
, pp.
31
38
.
15.
Tun
,
T.
and
Lwin
,
K. T.
, “
Optimizing the Microstructure and Mechanical Properties of Austempered Ductile Iron for Automobile Differential Gear
,”
J. Met. Mater. Min.
, Vol.
18
, No.
2
,
2008
, pp.
199
205
.
16.
Fraœ
,
E.
and
Górny
,
M.
, “
Thin Wall Austempered Ductile Iron (TWADI)
,”
Arch. Found. Eng.
, Vol.
9
, No.
3
,
2009
, pp.
45
48
.
17.
Kovacs
,
B.
and
Keough
,
J.
, “
Physical Properties and Application of Austempered Gray Iron
,”
AFS Transaction 1993
, Vols.
93–141
,
American Foundry Society
,
1993
, pp.
238
291
.
18.
Hayrynen
,
K. L.
,
Brandenberg
,
K. R.
, and
Keough
,
J. R.
, “
Applications of Austempered Gray Iron
,”
AFS Transaction
, Vols.
02–084
,
American Foundry Society
,
2002
, pp.
1
10
.
19.
Rundman
,
K. B.
,
Parolini
,
J. R.
, and
Moore
,
D. J.
, “
Relationship between Tensile Properties and Matrix Microstructure in Austempered Gray Iron
,”
AFS Transaction 2005
, Vols.
05–145
, No.
5
,
American Foundry Society
,
Schaumburg, IL
,
2005
, pp.
1
15
.
20.
İsmail
,
O.
,
Mehmet
,
B. B.
, and
Ahmet
,
M.
, “
The Effects of Ausferrite Structure on Surface Topography of Austempered Gray Iron
,”
JESTECH
, Vol.
15
, No.
4
,
2012
, pp.
183
192
.
21.
BSEN 10002-1,
1990
, “
Tensile Testing of Metallic Materials, Part 1: Method of Test at Ambient Temperature
,” BSI, London.
22.
ASTM E602-91:
Standard Test Method for Sharp-notch Tension Testing With Cylindrical Specimens
, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 1997.
23.
Putatunda
,
S. K.
, “
Development of Austempered Ductile Cast Iron (ADI) With Simultaneous High Yield Strength and Fracture Toughness by a Novel Two-step Austempering Process
,”
Mater. Sci. Eng.
, Vol.
A315
, Nos.
1–2
,
2001
, pp.
70
80
.
24.
Radzikowska
,
J. M.
, “
Metallography and Microstructures of Cast Iron
,”
ASM Handbook
, Vol.
9
,
1980
, p. 583.
25.
Sanusi
,
K. O.
and
Oliver
,
G. J.
, “
Effects of Grain Size on Mechanical Properties of Nanostructured Copper Alloy by Severe Plastic Deformation (SPD) Process
,”
J. Eng. Design Technol.
, Vol.
7
, No.
3
,
2009
, pp.
335
341
.
26.
Eroğlu
,
M.
,
Aksoy
,
M.
, and
Orhan
,
N.
, “
Effect of Coarse Initial Grain Size on Microstructure and Mechanical Properties of Weld Metal and HAZ of a Low Carbon Steel
,”
Mater. Sci. Eng. A
, Vol.
269
, Nos.
1–2
,
1999
, pp.
59
66
.
27.
Yue
,
T. M.
,
Ha
,
H. U.
, and
Musson
,
N. J.
, “
Grain Size Effects on the Mechanical Properties of Some Squeeze Cast Light Alloys
,”
J. Mater. Sci.
, Vol.
30
, No.
9
,
1995
, pp.
2277
2283
.
28.
Rajasekhara
,
S.
,
Ferreira
,
P. J.
,
Karjalainen
,
L. P.
, and
Kyröläinen
,
A.
, “
Hall–Petch Behavior in Ultra-fine-grained AISI 301LN Stainless Steel
,” Metallurgical and Materials Transaction A, Vol. 38A, 2007, pp. 1202–1210.
29.
Collini
,
L.
,
Nicoletto
,
G.
, and
Konečná
,
R.
, “
Microstructure and Mechanical Properties of Pearlitic Gray Cast Iron
,”
Mater. Sci. Eng. A
, Vol.
488
, Nos.
1–2
,
2008
, pp.
529
539
.
30.
Wang
,
Y.
,
Wei
,
X.
,
Jing
,
T. M.
,
Gao
,
S. J.
, and
Xin
,
Y.
, “
Properties of a Gray Cast Iron With Oriented Graphite Flakes
,”
J. Mater. Proc. Technol.
, Vol.
182
, Nos.
1–3
,
2007
, pp.
593
597
.
31.
Taşliçukur
,
Z.
,
Altuğ
,
G. S.
,
Polat
,
S.
,
Atapek
,
Ş. H.
, and
Türedi
,
E.
, “
Characterization of Microstructure and Fracture Behavior of GG20 and GG25 Cast Iron Materials Used in Valves
,”
Metal 2012, 21st International Conference on Metallurgy and Materials
, Brno, Czech Republic, May 23–25,
2012
.
This content is only available via PDF.
You do not currently have access to this content.