Abstract

Austenitic Fe–Mn–Al–Si–C steel provides excellent cold formability and lower density compared to conventional stainless steels. These steels owe their corrosion and oxidation resistance to their aluminum and silicon contents, and the stability of their gamma phase is due to manganese and carbon alloying elements. The production of a boride layer with high hardness can significantly increase its surface hardness and consequently its wear resistance. In this work, Fe–31Mn–7.5Al–1.3Si–0.9C steel samples were subjected to a boriding treatment for 4 h at 900°C. The composition of the bath was 90 % borax and 10 % aluminum. Boride layers with high hardness levels were obtained (1900 HV). There was also a marked increase in wear resistance of the material.

References

1.
Kim
,
H.
,
Suh
,
D.-W.
, and
Kim
,
N. J.
, “
Fe–Al–Mn–C Lightweight Structural Alloys: A Review on the Microstructures and Mechanical Properties
,”
Sci. Technol. Adv. Mater.
, Vol.
14
, No.
1
,
2013
, 014205. https://doi.org/10.1088/1468-6996/2014/1/014205
2.
Wang
,
R.
,
Straszheim
,
M. J.
, and
Rapp
,
R. A.
, “
A High-Temperature Oxidation-Resistant Fe–Mn–AI–Si Alloy
,”
Oxid. Mater.
, Vol.
21
, No.
1
,
1984
, pp.
71
79
. https://doi.org/10.1007/BF00659468
3.
Suh
,
D. W.
and
Kim
,
N. J.
, “
Low-Density Steels
,”
Scr. Mater.
, Vol.
68
, No.
6
,
2013
, pp.
337
338
. https://doi.org/10.1016/j.scriptamat.2012.11.037
4.
Raabe
,
D.
,
Springer
,
H.
,
Gutierrez-Urrutia
,
I.
,
Roters
,
F.
,
Bausch
,
M.
,
Seol
,
J.-B.
,
Koyama
,
M.
,
Choi
,
P.-P.
, and
Tsuzaki
,
K.
, “
Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe–Mn–Al–C Austenitic Steels
,”
JOM
, Vol.
66
, No.
9
,
2014
, pp.
1845
1856
. https://doi.org/10.1007/s11837-014-1032-x
5.
Seo
,
C. H.
,
Kwon
,
K. H.
,
Choi
,
K.
,
Kim
,
K. H.
,
Kwak
,
J. H.
,
Lee
,
S.
, and
Kim
,
N. J.
, “
Deformation Behavior of Ferrite-Austenite Duplex Lightweight Fe–Mn–Al–C Steel
,”
Scr. Mater.
, Vol.
66
, No.
8
,
2012
, pp.
519
522
. https://doi.org/10.1016/j.scriptamat.2011.12.026
6.
Kalashnikov
,
I.
,
Acselrad
,
O.
,
Shalkevich
,
A.
, and
Pereira
,
L. C.
, “
Chemical Composition Optimization for Austenitic Steels of the Fe–Mn–Al–C System
,”
J. Mater. Eng. Perform.
, Vol.
9
, No.
6
,
2000
, pp.
597
602
. https://doi.org/10.1361/105994900770345430
7.
Rana
,
R.
,
Liu
,
C.
, and
Ray
,
R. K.
, “
Low-Density Low-Carbon Fe–Al Ferritic Steels
,”
Scr. Mater.
, Vol.
68
, No.
6
,
2013
, pp.
354
359
. https://doi.org/10.1016/j.scriptamat.2012.10.004
8.
Yang
,
F.
,
Song
,
R.
,
Zhang
,
L.
, and
Zhao
,
C.
, “
Hot Deformation Behavior of Fe–Mn–Al Light-Weight Steel
,”
Proc. Eng.
, Vol.
81
,
2014
, pp.
456
461
. https://doi.org/10.1016/j.proeng.2014.10.022
9.
Hwang
,
S. W.
,
Ji
,
J. H.
,
Lee
,
E. G.
, and
Park
,
K. T.
, “
Tensile Deformation of a Duplex Fe–20Mn–9Al–0.6C Steel Having the Reduced Specific Weight
,”
Mater. Sci. Eng. A
, Vol.
528
, No.
15
,
2011
, pp.
5196
5203
. https://doi.org/10.1016/j.msea.2011.03.045
10.
ASTM G59-97(2014):
Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
This content is only available via PDF.
You do not currently have access to this content.