Abstract

In the past decade, magnesium has been seen as one of the most potential metals for weight-critical engineering applications. As magnesium is the lightest structural metal, it has higher weight-saving capabilities when compared to aluminum. Significant research efforts have been carried out on magnesium matrix alloys and composites to tailor and enhance mechanical properties based on end applications. This paper provides a review on fly-ash-reinforced magnesium matrix syntactic foams. Fly-ash cenospheres are made up of mainly alumina and silica and also contains large number of trace elements, which makes it intriguing to analyze the microstructure and interfacial responses of the end composites. In comparison with aluminum matrix syntactic foams, the research on magnesium matrix syntactic foams is still at an incipient stage. This paper provides an insight on processing techniques, microstructural and mechanical evaluations of pure Mg, AZ, and ZC alloy series, and their syntactic foams. This paper also reviews the weight-saving ability of magnesium matrix syntactic foams and their potential scope and applications.

References

1.
Gupta
,
M.
and
Sharon
,
N. M. L.
,
Magnesium, Magnesium Alloys, and Magnesium Composites
,
Wiley
,
Hoboken, NJ
,
2011
.
2.
Goh
,
C.
,
Gupta
,
M.
,
Wei
,
J.
, and
Lee
,
L.
, “
The Cyclic Deformation Behavior of Mg–Y2O3 Nanocomposites
,”
J. Compos. Mater.
, Vol.
42
, No.
19
,
2008
, pp.
2039
2050
.
3.
Itoi
,
T.
,
Takahashi
,
K.
,
Moriyama
,
H.
, and
Hirohashi
,
M.
, “
A High-Strength Mg–Ni–Y Alloy Sheet With a Long-Period Ordered Phase Prepared by Hot-Rolling
,”
Scripta Mater.
, Vol.
59
, No.
10
,
2008
, pp.
1155
1158
.
4.
Ye
,
H. Z.
and
Liu
,
X. Y.
, “
Review of Recent Studies in Magnesium Matrix Composites
,”
J. Mater. Sci.
, Vol.
39
, No.
20
,
2004
, pp.
6153
6171
.
5.
Gehrmann
,
R.
,
Frommert
,
M. M.
, and
Gottstein
,
G.
, “
Texture Effects on Plastic Deformation of Magnesium
,”
Mater. Sci. Eng.
, Vol.
395
, Nos.
1–2
,
2005
, pp.
338
349
.
6.
Rohatgi
,
P. K.
,
Gupta
,
N.
,
Schultz
,
B. F.
, and
Luong
,
D. D.
, “
The Synthesis, Compressive Properties, and Applications of Metal Matrix Syntactic Foams
,”
JOM
, Vol.
63
, No.
2
,
2011
, pp.
36
42
.
7.
Tao
,
X.
,
Zhang
,
L.
, and
Zhao
,
Y.
, “
Al Matrix Syntactic Foam Fabricated With Bimodal Ceramic Microspheres
,”
Mater. Des.
, Vol.
30
, No.
7
,
2009
, pp.
2732
2736
.
8.
Rohatgi
,
P.
,
Kim
,
J.
,
Gupta
,
N.
,
Alaraj
,
S.
, and
Daoud
,
A.
, “
Compressive Characteristics of A356/Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique
,”
Compos. Part A: Appl. Sci. Manuf.
, Vol.
37
, No.
3
,
2006
, pp.
430
437
.
9.
Gupta
,
N.
,
Pinisetty
,
D.
, and
Shunmugasamy
,
V. C.
,
Reinforced Polymer Matrix Syntactic Foams: Effect of Nano and Micro-Scale Reinforcement
,
Springer Science+Business Media
,
New York
,
2013
.
10.
Gupta
,
N.
and
Rohatgi
,
P. K.
,
Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications
,
Destech
,
Lancaster, PA
,
2014
.
11.
Rohatgi
,
P.
,
Guo
,
R.
,
Keshavaram
,
B.
, and
Golden
,
D.
, “
Cast Aluminum, Fly Ash Composites for Engineering Applications
,”
American Foundrymen's Society
,
Schaumburg, IL
,
1996
, pp.
575
579
.
12.
Gupta
,
N.
,
Luong
,
D. D.
, and
Cho
,
K.
, “
Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications
,”
Metals
, Vol.
2
, No.
3
,
2012
, pp.
238
252
.
13.
Kanahashi
,
H.
,
Mukai
,
T.
,
Yamada
,
Y.
,
Shimojima
,
K.
,
Mabuchi
,
M.
,
Aizawa
,
T.
, and
Higashi
,
K.
, “
Experimental Study for the Improvement of Crashworthiness in AZ91 Magnesium Foam Controlling Its Microstructure
,”
Mater. Sci. Eng.
, Vol.
308
, No.
1
,
2001
, pp.
283
287
.
14.
Mukai
,
T.
,
Kanahashi
,
H.
,
Yamada
,
Y.
,
Shimojima
,
K.
,
Mabuchi
,
M.
,
Nieh
,
T. G.
, and
Higashi
,
K.
, “
Dynamic Compressive Behavior of an Ultra-Lightweight Magnesium Foam
,”
Scripta Mater.
, Vol.
41
, No.
4
,
1999
, pp.
365
371
.
15.
Solórzano
,
E.
,
Hirschmann
,
M.
,
Rodriguez-Perez
,
M.
,
Körner
,
C.
, and
de Saja
,
J.
, “
Thermal Conductivity of AZ91 Magnesium Integral Foams Measured by the Transient Plane Source Method
,”
Mater. Lett.
, Vol.
62
, No.
24
,
2008
, pp.
3960
3962
.
16.
Wen
,
C.
,
Yamada
,
Y.
,
Shimojima
,
K.
,
Chino
,
Y.
,
Hosokawa
,
H.
, and
Mabuchi
,
M.
, “
Compressibility of Porous Magnesium Foam: Dependency on Porosity and Pore Size
,”
Mater. Lett.
, Vol.
58
, Nos.
3–4
,
2004
, pp.
357
360
.
17.
Hartmann
,
M.
,
Reindel
,
K.
, and
Singer
,
R. F.
, “
Fabrication and Properties of Syntactic Magnesium Foams
,”
MRS Proc.
, Vol.
521
,
1998
, p. 211. https://doi.org/10.1557/PROC-521-211
18.
Hyodo
,
T.
,
Murakami
,
M.
,
Shimizu
,
Y.
, and
Egashira
,
M.
, “
Preparation of Hollow Alumina Microspheres by Microwave-Induced Plasma Pyrolysis of Atomized Precursor Solution
,”
J. Eur. Ceram. Soc.
, Vol.
25
, No.
16
,
2005
, pp.
3563
3572
.
19.
Károly
,
Z.
and
Szépvölgyi
,
J.
, “
Hollow Alumina Microspheres Prepared by RF Thermal Plasma
,”
Powder Technol.
, Vol.
132
, Nos.
2–3
,
2003
, pp.
211
215
.
20.
Watanabe
,
M.
,
Yamashita
,
H.
,
Chen
,
X.
,
Yamanaka
,
J.
,
Kotobuki
,
M.
,
Suzuki
,
H.
, and
Uchida
,
H.
, “
Nano-Sized Ni Particles on Hollow Alumina Ball: Catalysts for Hydrogen Production
,”
Appl. Catal. B: Environ.
, Vol.
71
, No.
3
,
2007
, pp.
237
245
.
21.
Daoud
,
A.
,
El-Khair
,
M. A.
,
Abdel-Aziz
,
M.
, and
Rohatgi
,
P.
, “
Fabrication, Microstructure and Compressive Behavior of ZC63 Mg–Microballoon Foam Composites
,”
Compos. Sci. Technol.
, Vol.
67
, No.
9
,
2007
, pp.
1842
1853
. https://doi.org/10.1016/j.compscitech.2006.10.023
22.
Rajan
,
T.
,
Pillai
,
R.
,
Pai
,
B.
,
Satyanarayana
,
K.
, and
Rohatgi
,
P.
, “
Fabrication and Characterisation of Al–7Si–0.35 Mg/Fly Ash Metal Matrix Composites Processed by Different Stir Casting Routes
,”
Compos. Sci. Technol.
, Vol.
67
, Nos.
15–16
,
2007
, pp.
3369
3377
. https://doi.org/10.1016/j.compscitech.2007.03.028
23.
Surappa
,
M.
, “
Synthesis of Fly Ash Particle Reinforced A356 Al Composites and Their Characterization
,”
Mater. Sci. Eng.
, Vol.
480
, Nos.
1–2
,
2008
, pp.
117
124
. https://doi.org/10.1016/j.msea.2007.06.068
24.
Liu
,
J.
,
Yu
,
S.
,
Huang
,
Z.
,
Ma
,
G.
, and
Liu
,
Y.
, “
Microstructure and Compressive Property of In Situ Mg 2 Si Reinforced Mg–Microballoon Composites
,”
J. Alloy Compd.
, Vol.
537
,
2012
, pp.
12
18
.
25.
Zhang
,
L.
and
Zhao
,
Y.
, “
Mechanical Response of Al Matrix Syntactic Foams Produced by Pressure Infiltration Casting
,”
J. Compos. Mater.
, Vol.
41
, No.
17
,
2007
, pp.
2105
2117
. https://doi.org/10.1177/0021998307074132
26.
Gupta
,
M.
and
Wong
,
W.
, “
Magnesium-Based Nanocomposites: Lightweight Materials of the Future
,”
Mater. Character.
, Vol.
105
,
2015
, pp.
30
46
. https://doi.org/10.1016/j.matchar.2015.04.015
27.
Hrairi
,
M.
,
Ahmed
,
M.
, and
Nimir
,
Y.
, “
Compaction of Fly Ash–Aluminum Alloy Composites and Evaluation of Their Mechanical and Acoustic Properties
,”
Adv. Powder Technol.
, Vol.
20
, No.
6
,
2009
, pp.
548
553
. https://doi.org/10.1016/j.apt.2009.07.006
28.
Huang
,
Z.-Q.
,
Yu
,
S.-R.
, and
Li
,
M.-Q.
, “
Microstructures and Compressive Properties of AZ91D/Fly-Ash Cenospheres Composites
,”
Trans. Nonferrous Metals Soc. China
, Vol.
20
,
2010
, pp.
s458
s462
. https://doi.org/10.1016/S1003-6326(10)60518-3
29.
Rohatgi
,
P.
,
Daoud
,
A.
,
Schultz
,
B.
, and
Puri
,
T.
, “
Microstructure and Mechanical Behavior of Die Casting AZ91D-Fly Ash Cenosphere Composites
,”
Compos. Part A: Appl. Sci. Manuf.
, Vol.
40
, Nos.
6–7
,
2009
, pp.
883
896
. https://doi.org/10.1016/j.compositesa.2009.04.014
30.
Huang
,
Z.
and
Yu
,
S.
, “
Microstructure Characterization on the Formation of In Situ Mg2Si and MgO Reinforcements in AZ91D/Flyash Composites
,”
J. Alloy Compd.
, Vol.
509
, No.
2
,
2011
, pp.
311
315
. https://doi.org/10.1016/j.jallcom.2010.09.015
31.
Gupta
,
N.
and
Woldesenbet
,
E.
, “
Experimental Investigation on the Effect of Cenosphere Radius Ratio on the Flatwise Compressive Properties of Syntactic Foams
,”
Compos. Part A: Appl. Sci. Manuf.
, Vol.
35
, No.
1
,
2004
, pp.
103
111
.
32.
Luong
,
D. D.
,
Strbik
,
O. M.
,
Hammond
,
V. H.
,
Gupta
,
N.
, and
Cho
,
K.
, “
Development of High Performance Lightweight Aluminum Alloy/SiC Hollow Sphere Syntactic Foams and Compressive Characterization at Quasi-Static and High Strain Rates
,”
J. Alloy Compd.
, Vol.
550
,
2013
, pp.
412
422
. https://doi.org/10.1016/j.jallcom.2012.10.171
33.
Nguyen
,
Q. B.
,
Sharon Nai
,
M. L.
,
Nguyen
,
A. S.
,
Seetharaman
,
S.
,
Wai Leong
,
E. W.
, and
Gupta
,
M.
, “
Synthesis and Properties of Light Weight Magnesium—Cenosphere Composite
,”
Mater. Sci. Technol.
,
2016
, pp.
1
7
.
34.
Hassan
,
S.
,
Ho
,
K.
, and
Gupta
,
M.
, “
Increasing Elastic Modulus, Strength and CTE of AZ91 by Reinforcing Pure Magnesium With Elemental Copper
,”
Mater. Lett.
, Vol.
58
, No.
16
,
2004
, pp.
2143
2146
. https://doi.org/10.1016/j.matlet.2004.10.011
35.
Huang
,
Z.
,
Yu
,
S.
,
Liu
,
J.
, and
Zhu
,
X.
, “
Microstructure and Mechanical Properties of In Situ Mg2Si/AZ91D Composites Through Incorporating Fly Ash Cenospheres
,”
Mater. Des.
, Vol.
32
, No.
10
,
2011
, pp.
4714
4719
. https://doi.org/10.1016/j.matdes.2011.06.043
36.
Daoud
,
A.
, “
Effect of Fly Ash Addition on the Structure and Compressive Properties of 4032–Fly Ash Particle Composite Foams
,”
J. Alloy Compd.
, Vol.
487
, Nos.
1–2
,
2009
, pp.
618
625
. https://doi.org/10.1016/j.jallcom.2009.08.026
37.
Luong
,
D. D.
,
Gupta
,
N.
,
Daoud
,
A.
, and
Rohatgi
,
P. K.
, “
High Strain Rate Compressive Characterization of Aluminum Alloy/Fly Ash Cenosphere Composites
,”
JOM
, Vol.
63
, No.
2
,
2011
, pp.
53
56
. https://doi.org/10.1007/s11837-011-0029-y
38.
Mondal
,
D.
,
Das
,
S.
,
Ramakrishnan
,
N.
, and
Bhasker
,
K. U.
, “
Cenosphere Filled Aluminum Syntactic Foam Made Through Stir-Casting Technique
,”
Compos. Part A: Appl. Sci. Manuf.
, Vol.
40
, No.
3
,
2009
, pp.
279
288
. https://doi.org/10.1016/j.compositesa.2008.12.006
39.
Peroni
,
L.
,
Scapin
,
M.
,
Avalle
,
M.
,
Weise
,
J.
, and
Lehmhus
,
D.
, “
Dynamic Mechanical Behavior of Syntactic Iron Foams With Glass Microspheres
,”
Mater. Sci. Eng.
, Vol.
552
,
2012
, pp.
364
375
. https://doi.org/10.1016/j.msea.2012.05.053
40.
Rocha Rivero
,
G. A.
,
Schultz
,
B. F.
,
Ferguson
,
J.
,
Gupta
,
N.
, and
Rohatgi
,
P. K.
, “
Compressive Properties of Al-A206/SiC and Mg-AZ91/SiC Syntactic Foams
,”
J. Mater. Res.
, Vol.
28
, No.
17
,
2013
, pp.
2426
2435
. https://doi.org/10.1557/jmr.2013.176
41.
Xue
,
X.
,
Kearns
,
V.
,
Williams
,
R.
, and
Zhao
,
Y.
, “
Mechanical and Biological Properties of Titanium Syntactic Foams
,”
Minerals, Metals and Materials Society/AIME
,
Warrendale, PA
,
2010
.
42.
Fuganti
,
A.
,
Lorenzi
,
L.
,
Grønsund
,
A.
, and
Langseth
,
M.
, “
Aluminum Foam for Automotive Applications
,”
Adv. Eng. Mater.
, Vol.
2
, No.
4
,
2000
, pp.
200
204
. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<200::AID-ADEM200>3.0.CO;2-2
43.
Kovacik
,
J.
and
Simancik
,
F.
, “
Comparison of Zinc and Aluminium Foam Behaviour
,”
Kovove Mater.
, Vol.
42
, No.
2
,
2004
.
44.
Niemeyer
,
M.
, “
Applications of Magnesium Foams
,”
DFG Symposium
, Bonn, Germany, Nov 11–12,
1999
.
45.
Banhart
,
J.
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
, Vol.
46
, No.
6
,
2001
, pp.
559
632
. https://doi.org/10.1016/S0079-6425(00)00002-5
46.
Meenashisundaram
,
G. K.
,
Nai
,
M. H.
,
Almajid
,
A.
, and
Gupta
,
M.
, “
Development of High Performance Mg–TiO2 Nanocomposites Targeting for Biomedical/Structural Applications
,”
Mater. Des.
, Vol.
65
,
2015
, pp.
104
114
. https://doi.org/10.1016/j.matdes.2014.08.041
This content is only available via PDF.
You do not currently have access to this content.