Abstract

In this study, a novel concept of 3D constant life diagram (CLD) for fatigue life prediction of a unidirectional (UD) polymer composite under spectrum load is proposed. Further, it is constructed and used to predict the fatigue life of a UD carbon fiber composite (CFC) subjected to a standard spectrum load sequence at an arbitrary off-axis angle. First, UD IMA/M21 CFC laminates were fabricated by an autoclave process. Static mechanical tests were conducted to determine the tensile and compressive strength at various off-axis angles ranging from 0° to 90°. Then the constant amplitude (CA) fatigue tests at three different stress ratios, R = σminmax of 0.1 (tension-tension), −1.0 (tension-compression), and 10.0 (compression-compression) and at various off-axis angles between 0° and 90° at each of these stress ratios were performed to determine stress-life curves. Using the static and CA fatigue data generated, 3D CLD for UD CFC was constructed. Further, fatigue life of UD CFC subjected to a standard mini-FALSTAFF spectrum load sequence at an arbitrary off-axis angle of 20° was predicted following an empirical method using 3D CLD. Fatigue tests under the mini-FALSTAFF spectrum load sequence at an off-axis angle of 20° were also conducted at various reference stresses and compared with the predictions. A reasonably good correlation was observed between the predicted and experimental fatigue lives under off-axis spectrum loads.

References

1.
Kawai
,
M.
and
Taniguchi
,
T.
, “
Off-Axis Fatigue Behavior of Plain Weave Carbon/Epoxy Fabric Laminates at Room and High Temperatures and its Mechanical Modeling
,”
Compos. Part A
, Vol.
37
, No.
2
,
2006
, pp.
243
256
. https://doi.org/10.1016/j.compositesa.2005.07.003
2.
Hashin
,
Z.
and
Rotem
,
R.
, “
Fatigue Failure Criterion for Fiber Reinforced Materials
,”
J Compos. Mater
, Vol.
7
, No.
4
,
1973
, pp.
448
464
. https://doi.org/10.1177/002199837300700404
3.
Kawai
,
M.
and
Saito
,
S.
, “
Off-Axis Strength Differential Effects in Unidirectional Carbon/Epoxy Laminates at Different Strain Rates and Predictions of Associated Failure Envelopes
,”
Compos. Part A
, Vol.
40
, No.
10
,
2009
, pp.
1632
1649
. https://doi.org/10.1016/j.compositesa.2009.08.007
4.
Bing
,
Q.
and
Sun
,
C.
, “
Specimen Size Effect in Off-Axis Compression Tests of Fiber Composites
,”
Compos. Part B
, Vol.
39
, No.
1
,
2008
, pp.
20
26
. https://doi.org/10.1016/j.compositesb.2007.02.010
5.
Curtis
,
P.
, “
Tensile Fatigue Mechanisms in Unidirectional Polymer Matrix Composite Materials
,”
Int. J. Fat.
, Vol.
13
, No.
5
,
1991
, pp.
377
382
. https://doi.org/10.1016/0142-1123(91)90593-N
6.
Philippidis
,
T.
and
Vassilopoulos
,
A.
, “
Fatigue of Composite Laminates Under Off-Axis Loading
,”
Int. J. Fat.
, Vol.
21
, No.
3
,
2009
, pp.
253
262
.
7.
Awerbuch
,
J.
and
Hahn
,
H.
, “
Off-Axis Fatigue of Graphite/Epoxy Composite
,”
Fatigue of Fibrous Composite Materials, ASTM STP 723
,
ASTM International
,
West Conshohocken, PA
,
1981
, pp.
243
273
.
8.
Kawai
,
M.
,
Yajima
,
S.
,
Hachinohe
,
A.
, and
Kawase
,
Y.
, “
High-Temperature Off-Axis Fatigue Behaviour of Unidirectional Carbon-Fibre-Reinforced Composites With Different Resin Matrices
,”
Compos. Sci. Tech.
, Vol.
61
, No.
9
,
2001
, pp.
1285
1302
. https://doi.org/10.1016/S0266-3538(01)00027-6
9.
Plumtree
,
A.
and
Shi
,
L.
, “
Fatigue Damage Evolution in Off-Axis Unidirectional CFRP
,”
Int. J. Fat.
, Vol.
24
, Nos.
2–4
,
2002
, pp.
155
159
. https://doi.org/10.1016/S0142-1123(01)00068-8
10.
Wu
,
F. Q.
and
Yao
,
W. X.
, “
Fatigue Life Prediction of Off-Axis Unidirectional Laminate
,” in
ICFC5
,
Yao
,
W.-X.
, Ed.,
DEStech Publications
,
Nanjing
, China, October 16–19,
2010
, pp.
151
166
.
11.
Kawai
,
M.
Fatigue Life Prediction of Composite Materials Under Constant Amplitude Loading
,” in
Fatigue Life Prediction of Composites and Composite Structures
,
Woodhead Publishing
,
Cambridge, United Kingdom
,
2010
, pp.
171
219
.
12.
Post
,
N. L.
,
Case
,
S. W.
, and
Lesko
,
J. J.
, “
Modeling the Variable Amplitude Fatigue of Composite Materials: A Review and Evaluation of the State of the Art for Spectrum Loading
,”
Int. J. Fat.
, Vol.
30
, No.
12
,
2008
, pp.
2064
2086
. https://doi.org/10.1016/j.ijfatigue.2008.07.002
13.
Philippidis
,
T.
and
Vassilopoulos
,
A.
, “
Life Prediction Methodology for GFRP Laminates Under Spectrum Loading
,”
Compos. Part A
, Vol.
35
, No.
6
,
2004
, pp.
657
666
. https://doi.org/10.1016/j.compositesa.2004.02.009
14.
Varvani-Farahani
,
A.
,
Haftchenari
,
H.
, and
Panbechi
,
M.
, “
An Energy-Based Fatigue Damage Parameter for Off-Axis Unidirectional FRP Composites
,”
Compos. Struct.
, Vol.
79
, No.
3
,
2007
, pp.
381
389
. https://doi.org/10.1016/j.compstruct.2006.02.013
15.
Kawai
,
M.
, “
A Phenomenological Model for Off-Axis Fatigue Behavior of Unidirectional Polymer Matrix Composites Under Different Stress Ratios
,”
Compos. Part A
, Vol.
35
, Nos.
7–8
,
2004
, pp.
955
963
. https://doi.org/10.1016/j.compositesa.2004.01.004
16.
Al-Assaf
,
Y.
and
El Kadi
,
H.
, “
Fatigue Life Prediction of Unidirectional Glass Fiber/Epoxy Composite Laminae Using Neural Networks
,”
Compos. Struct
, Vol.
53
, No.
1
,
2001
, pp.
65
71
. https://doi.org/10.1016/S0263-8223(00)00179-3
17.
Degrieck
,
J.
and
Paepegem
,
W. V.
, “
Fatigue Damage Modelling of Fiber Reinforced Composite Materials: Review
,”
Appl. Mech. Rev.
, Vol.
54
, No.
4
,
2001
, pp.
279
300
. https://doi.org/10.1115/1.1381395
18.
Kawai
,
M.
and
Koizumi
,
M.
, “
Nonlinear Constant Fatigue Life Diagrams for Carbon/Epoxy Laminates at Room Temperature
,”
Compos. Part A
, Vol.
38
, No.
11
,
2007
, pp.
2342
2353
. https://doi.org/10.1016/j.compositesa.2007.01.016
19.
ASTM D3039,
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
20.
ASTM D3410,
Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
21.
ASTM 3479D,
Standard Test Method for Tension-tension Fatigue of Polymer Matrix Composite Materials
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
22.
Van Dijk
,
G.
and
de Jonge
,
J.
,
Introduction to a Fighter Aircraft Loading Standard for Fatigue Evaluations (FALSTAFF)
,
NLR
,
Amsterdam, the Netherlands
,
1975
.
23.
Heuler
,
P.
and
Klatschke
,
H.
, “
Generation and Use of Standardised Load Spectra and Load-Time Histories
,”
Int. J. Fat.
, Vol.
27
, No.
8
,
2005
, pp.
974
990
. https://doi.org/10.1016/j.ijfatigue.2004.09.012
24.
Kawai
,
M.
and
Teranuma
,
T.
, “
A Multiaxial Fatigue Failure Criterion Based on the Principal Constant Life Diagrams for Unidirectional Carbon/Epoxy Laminates
,”
Compos. Part. A
, Vol.
43
, No.
8
,
2012
, pp.
1252
1266
. https://doi.org/10.1016/j.compositesa.2012.03.003
25.
Gibson
,
R.
,
Principles of Composite Material Mechanics
, 3rd ed.,
CRC
,
Boca Raton, FL
,
2012
.
26.
Harris
,
B.
,
Fatigue in Composites: Science and Technology of the Fatigue Response of Fiber-Reinforced Plastics
,
Woodhead Publishing
,
Cambridge, United Kingdom
,
2003
.
27.
Kawai
,
M.
and
Itoh
,
N.
, “
A Failure-Mode Based Anisomorphic Constant Life Diagram for a Unidirectional Carbon/Epoxy Laminate Under Off-Axis Fatigue Loading at Room Temperature
,”
J. Compos. Mater.
, Vol.
48
, No.
5
,
2014
, pp.
571
592
. https://doi.org/10.1177/0021998313476324
28.
Petermann
,
J.
and
Plumtree
,
A.
, “
A Unified Fatigue Failure Criterion for Unidirectional Laminates
,”
Compos. Part A
, Vol.
32
, No.
1
,
2001
, pp.
107
118
. https://doi.org/10.1016/S1359-835X(00)00099-3
29.
Buch
,
A.
,
Fatigue Strength Calculation
,
Trans Tech
,
Dürnten, Switzerland
,
1988
.
30.
Hahn
,
H.
Fatigue Behavior and Life Prediction of Composite Laminates
,”
Composite Materials: Testing and Design, ASTM STP 674
,
ASTM International
,
West Conshohocken, PA
,
1979
, pp.
383
417
.
31.
Vassilopoulos
,
A.
,
Manshadi
,
B.
, and
Keller
,
T.
, “
Influence of the Constant Life Diagram Formulation on the Fatigue Life Prediction of Composite Materials
,”
Int. J. Fat.
, Vol.
32
, No.
4
,
2010
, pp.
659
669
. https://doi.org/10.1016/j.ijfatigue.2009.09.008
32.
ASTM E1049,
Standard Practices for Cycle Counting in Fatigue Analysis
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
33.
Miner
,
M.
, “
Cumulative Damage in Fatigue
,”
J. Appl. Mech.
, Vol.
67
,
1945
, pp.
159
164
.
34.
Kawai
,
M.
,
Matsuda
,
Y.
, and
Yoshimura
,
R.
, “
A General Method for Predicting Temperature-Dependent Anisomorphic Constant Fatigue Life Diagram for a Woven Fabric Carbon/Epoxy Laminate
,”
Compos. Part A
, Vol.
43
, No.
6
,
2012
, pp.
915
925
. https://doi.org/10.1016/j.compositesa.2012.01.025
35.
Kawai
,
M.
and
Matsuda
,
Y.
, “
Anisomorphic Constant Fatigue Life Diagrams for a Woven Fabric Carbon/Epoxy Laminate at Different Temperatures
,”
Compos. Part A
, Vol.
43
, No.
4
,
2012
, pp.
647
657
. https://doi.org/10.1016/j.compositesa.2012.01.009
36.
Kawai
,
M.
,
Yagihashi
,
Y.
,
Hoshi
,
H.
, and
Iwahori
,
Y.
, “
Anisomorphic Constant Fatigue Life Diagrams for Quasi-Isotropic Woven Fabric Carbon/Epoxy Laminates Under Different Hygro-Thermal Environments
,”
Adv. Compos. Mater.
, Vol.
22
, No.
2
,
2013
, pp.
79
98
. https://doi.org/10.1080/09243046.2013.777172
37.
Shirazi
,
A.
and
Varvani-Farahani
,
A.
, “
A Stiffness Degradation Based Fatigue Damage Model for FRP Composites of (0/θ) Laminate Systems
,”
Appl. Compos. Mater.
, Vol.
17
, No.
2
,
2010
, pp.
137
150
. https://doi.org/10.1007/s10443-009-9099-1
This content is only available via PDF.
You do not currently have access to this content.