Abstract

In this paper, the results of a study aimed at understanding the extrinsic influence of test specimen orientation, with respect to a wrought alloy-steel plate, on the stress-controlled cyclic fatigue properties and fracture behavior of a structural steel is highlighted. The alloy steel chosen was ASTM A572 grade 50. Samples of this alloy steel, prepared from both the longitudinal and transverse orientations, were cyclically deformed over a range of maximum stress and the corresponding number of cycles to failure (NF) was recorded. The influence of test specimen orientation and intrinsic microstructural effects on cyclic fatigue life and fracture behavior are presented and discussed. Overall, the macroscopic fracture mode was essentially identical regardless of orientation of the test specimen with respect to the wrought plate. The microscopic mechanisms governing cyclic deformation, fatigue life, and final fracture behavior are presented in light of the mutually interactive influences of magnitude of applied stress, intrinsic microstructural effects, orientation of test specimen, and deformation characteristics of the key microstructural constituents.

References

1.
Fujikubo
,
M.
,
Yao
,
T.
,
Khedmati
,
M. R.
,
Harada
,
M.
, and
Yanagihara
,
D.
, “
Estimation of Ultimate Strength of Continuous Stiffened Panel Under Combined Transverse Thrust and Lateral Pressure. Part 1: Continuous Plate
,”
Marine Struct.
, Vol.
18
, Nos.
5–6
,
2005
, pp.
383
410
. https://doi.org/10.1016/j.marstruc.2006.01.001https://doi.org/10.1016/j.marstruc.2005.08.004
2.
Grondin
,
G. Y.
,
Chen
,
Q.
,
Elwi
,
A. E.
, and
Cheng
,
J. J.
, “
Stiffened Steel Plates Under Compression and Bending
,”
J. Constr. Steel Res.
, Vol.
45
, No.
2
,
1998
, pp.
125
148
. https://doi.org/10.1016/S0143-974X(97)00058-8https://doi.org/10.1016/S0143-974X(97)00058-8
3.
Sheikh
,
. A.
 I
,
Grondin
,
G. Y.
, and
Elwi
,
A. E.
, “
Stiffened Steel Plates Under Uniaxial Compression
,”
J. Constr. Steel Res.
, Vol.
58
, Nos.
5–8
,
2002
, pp.
1061
1080
. https://doi.org/10.1016/S0143-974X(01)00083-9https://doi.org/10.1016/S0143-974X(01)00083-9
4.
Grondin
,
G. Y.
,
Chen
,
Q.
,
Elwi
,
A. E.
, and
Cheng
,
J. J.
, “
Buckling of Stiffened Steel Plates—A Parametric Study
,”
J. Constr. Steel Res.
, Vol.
50
, No.
2
,
1999
, pp.
151
175
. https://doi.org/10.1016/S0143-974X(98)00242-9https://doi.org/10.1016/S0143-974X(98)00242-9
5.
Speich
,
G. R.
,
Dabkowski
,
D. S.
, and
Porter
,
L. F.
, “
Strength and Toughness of Fe-10Ni Alloys Containing C, Cr, Mo and Co
,”
Metall. Trans.
, Vol.
4
, No.
1
,
1973
, pp.
303
315
. https://doi.org/10.1007/BF02649630https://doi.org/10.1007/BF02649630
6.
Olson
,
G. B.
,
Azrin
,
M.
, and
Wright
,
E. S.
, “
Innovations in Ultra High Strength Steel Technology
,”
Proceedings of the 34th Sagamore Army Materials Conference
,
U.S. Army Materials Technology Laboratory
,
Watertown, MA
,
1990
, pp.
3
65
.
7.
Manigandan
,
K.
,
Srivatsan
,
T. S.
,
Quick
,
T.
,
Sastry
,
S.
, and
Schmidt
,
M. L.
, “Influence of Microstructure and Load Ratio on Cyclic Fatigue and Final Fracture Behavior of Two High Strength Steels,”
Materials and Design
, Vol.
55
,
2014
, pp.
727
739
. https://doi.org/10.1016/j.matdes.2013.10.003
8.
Gangloff
,
R. P.
, “
Hydrogen-Assisted Cracking
,”
Comprehensive Structural Integrity, Environmentally Assisted Failure
, Vol.
6
,
Milne
,
I.
Ritchie
, and
R. O.
Karihaloo
B.
, Eds.,
2003
, pp.
31
101
.
9.
Hodge
,
J. M.
and
Mogford
,
I. L.
,
Proceedings of the Institute of Mechanical Engineers
96
,
1979
, pp.
93
109
.
10.
Kalderon
,
D.
, “
Steam turbine failure at Hinkley Point ‘A’
,”
Proceedings of the Institute of Mechanical Engineers
, Vol.
186
,
1972
, p. 341.
11.
Liu
,
C.
and
Macdonald
,
D. D.
, “
Prediction of Failures of Low-Pressure Steam Turbine Disks
,”
J. Pressure Vessel Technol.
, Vol.
119
, No.
4
,
1997
, pp.
393
400
. https://doi.org/10.1115/1.2842321https://doi.org/10.1115/1.2842321
12.
Craig
,
P.
,
Przybyla
,
R. P.
,
Salajegheh
,
N.
, and
McDowell
,
D. L.
, “
Microstructure-Sensitive Modeling of High Cycle Fatigue
,”
Int. J. Fatigue
, Vol.
32
, No.
3
,
2010
, pp.
512
525
. https://doi.org/10.1016/j.ijfatigue.2009.03.021
13.
ASTM A572/A572M-12,
Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
14.
Kaufmann
,
E. J.
,
Metrovich
,
B.
, and
Pense
,
A. W.
, “
Characterization of Cyclic Inelastic Strain Behavior on Properties of A572 Gr. 50 and A913 Gr. 50 Rolled Sections
,”
ATLSS Report No. 01–13
,
ATLSS, Leigh University
,
Bethlehem, PA
,
2001
.
15.
Wu
,
Q.
,
Chen
,
Y.
, and
Zhou
,
F.
, “
Cyclic Loading Tests of High Strength Steel Under Large Inelastic Strains
,”
J. Build. Struct.
, Vol.
35
, No.
2
,
2014
, pp.
89
94
.
16.
Pellissier
,
G. E.
, “
Effects of Microstructure on the Fracture Toughness of Ultrahigh-Strength Steels
,”
Eng. Fract. Mech.
, Vol.
1
, No.
1
,
1968
, pp.
55
60
. https://doi.org/10.1016/0013-7944(68)90016-7https://doi.org/10.1016/0013-7944(68)90016-7
17.
Tomitya
,
Y.
and
Okawa
,
T.
, “
Effect of Microstructure on Mechanical Properties of Isothermally Bainite Transformed 300M Steel
,”
Mater. Sci. Eng.
, Vol.
172
, Nos.
1–2
,
1993
, pp.
145
151
. https://doi.org/10.1016/0921-5093(93)90434-Ghttps://doi.org/10.1016/0921-5093(93)90434-G
18.
Davis
,
J. R.
,
Metals Handbook Desk Edition
, 2nd ed.,
ASM International
,
Materials Park, OH
,
1998
, pp.
153
173
.
19.
ASTM E8-E8M-15a,
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.orghttps://doi.org/10.1520/E0008_E0008M-15A
20.
ASTM E466-07,
Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
,
2007
, www.astm.orghttps://doi.org/10.1520/E0466-07
21.
Classification and Designation of Carbon and Low Alloy Steels
,”
Metals Handbook: Properties and Selection
, 10th ed.,
ASM International
,
Materials Park, OH
,
1990
.
22.
Bajer
,
A. J.
,
Laura
,
E. J.
, and
Wei
,
R. P.
, “
Structure and Properties of Ultrahigh Strength Steels
,”
ASTM STP 370
,
Richmond
and
F.
Welty
J.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1965
, pp.
3
14
. https://doi.org/10.1520/STP370-EB
23.
Banerjee
,
B. R.
, “
Structure and Properties of Ultrahigh Strength Steels
,”
ASTM STP 370
,
Richmond
and
F.
Welty
J.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1965
, pp.
94
109
. https://doi.org/10.1520/STP370-EB
24.
Dieter
,
G. E.
,
Mechanical Metallurgy
, 3rd ed.,
McGraw-Hill
,
Boston
,
1986
, pp.
410
430
.
This content is only available via PDF.
You do not currently have access to this content.