Abstract

An attempt was made for making Titanium–cenosphere metal syntactic foams with varying relative densities, using different cenosphere sizes and volume fractions. Cold compaction of Ti and cenosphere powder mix was carried out at a pressure of 75 MPa, followed by sintering at 1100°C for 2 h. The sintered foam samples were characterized in terms of microstructure, primarily to observe the extent of cenosphere crushing, distribution of cenosphere, and extent of sintering. Uniform distribution of cenosphere with some extent of cenosphere crushing has been observed within the Ti matrix. XRD and EDX analysis confirms the oxidation of Ti particles to a small extent and also the entrapment of crushed cenosphere shells within the matrix, which makes the foam stronger but brittle in nature. The plateau stress, energy absorption, and modulus of these foams vary with the cenosphere size and volume fraction. Foams made with finer size cenosphere exhibits higher plateau stress and higher energy absorption for a fixed cenosphere volume fraction and at a constant foam density. Crushing of cenosphere, while compaction causes an increased density of the foam as compared to the theoretical value. As a consequence, the foam with higher cenosphere volume fraction or with coarser cenosphere size exhibited marginally higher strength and energy absorption. The variation in deformation mechanism as a function of cenosphere size and volume fraction was examined. These foams exhibited considerably higher strength and stiffness than the conventional foam and demonstrate the possibility of using them for biomedical and engineering applications.

References

1.
Banhart
,
J.
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
, Vol.
46
, No.
6
,
2001
, pp.
559
632
. https://doi.org/10.1016/S0079-6425(00)00002-5
2.
Liu
,
P. S.
,
Introduction to Porous Materials
,
Tsinghua University Press
,
Beijing, China
,
2004
.
3.
Singh
,
R. P.
,
Lee
,
D.
,
Jones
,
J. R.
,
Poologasundarampillai
,
G.
,
Post
,
T.
,
Lindley
,
T. C.
, and
Dashwood
,
R. J.
, “
Hierarchically Structured Titanium Foams for Tissue Scaffold Applications
,”
Acta Biomater.
, Vol.
6
, No.
12
,
2010
, pp.
4596
4604
. https://doi.org/10.1016/j.actbio.2010.06.027
4.
Yamada
,
Y.
,
Shimojima
,
K.
,
Sakaguchi
,
Y.
,
Mabuchi
,
M.
,
Nakamura
,
M.
,
Asahina
,
T.
,
Mukai
,
T.
,
Kanahashi
,
H.
, and
Higashi
,
K.
, “
Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure
,”
Mater. Sci. Eng. A
, Vol.
280
, No.
1
,
2000
, pp.
225
228
. https://doi.org/10.1016/S0921-5093(99)00671-1
5.
Davies
,
G. J.
and
Zhen
,
S.
, “
Metallic Foams—Their Production Properties and Application
,”
J. Mater. Sci.
, Vol.
18
, No.
7
,
1983
, pp.
1899
1911
. https://doi.org/10.1007/BF00554981
6.
Wen
,
C. E.
,
Mabuchi
,
M.
,
Yamada
,
Y.
,
Shimojima
,
K.
,
Chino
,
Y.
, and
Asahina
,
T.
, “
Processing of Biocompatible Porous Ti and Mg
,”
Scr. Mater.
, Vol.
45
, No.
10
,
2001
, pp.
1147
1153
, https://doi.org/10.1016/S1359-6462(01)01132-0
7.
Banhart
,
J.
,
Schmoll
,
C.
, and
Neumann
,
U.
,
Proceedings of the 1998 Powder Metallurgy World Conference and Exhibition
,
European Powder Metallurgy Association
,
Shrewsbury, UK
,
1998
.
8.
Kang
,
S. B.
,
Yoon
,
K. S.
,
Kim
,
J. S.
,
Nam
,
T. H.
, and
Gjunter
,
V. E.
, “
In Vivo Results of Porous NiTi Shape Memory Alloys: Bone Response and Growth
,”
Mater. Trans.
, Vol.
43
,
2002
, pp.
1045
1048
. https://doi.org/10.2320/matertrans.43.1045
9.
Tukkanen
,
J.
,
Danilov
,
A.
,
Ryhanen
,
J.
, and
Kujala
,
S.
, “
Effect of Porosity on the Osteointegration and Bone Ingrowth of a Weight-Bearing Nickel–Titanium Bone Graft Substitute
,”
Biomaterials
, Vol.
24
, No.
25
,
2003
, pp.
4691
4697
. https://doi.org/10.1016/S0142-9612(03)00359-4
10.
Okazaki
,
Y.
,
Nishimura
,
E.
,
Nakada
,
H.
, and
Kobayashi
,
K.
, “
Surface Analysis of Ti–15Zr–4Nb–4Ta Alloy After Implantation in Rat Tibia
,”
Biomaterials
, Vol.
22
, No.
6
,
2001
, pp.
599
607
. https://doi.org/10.1016/S0142-9612(00)00221-0
11.
Long
,
M.
and
Rack
,
H. J.
, “
Titanium Alloys in Total Joint Replacement—A Materials Science Perspective
,”
Biomaterials
, Vol.
19
, No.
18
,
1998
, pp.
1621
1639
. https://doi.org/10.1016/S0142-9612(97)00146-4
12.
Gaillard
,
C.
,
Despois
,
L. F.
, and
Mortensen
,
A.
, “
Processing of NaCl Powders of Controlled Size and Shape for the Microstructural Tailoring of Aluminium Foams
,”
Mater. Sci. Eng. A
, Vol.
374
, Nos.
1–2
,
2004
, pp.
250
262
. https://doi.org/10.1016/j.msea.2004.03.015
13.
Salimon
,
A.
,
Breehet
,
Y.
,
Ashby
,
M. F.
, and
Greer
,
A. L.
, “
Potential Applications for Steel and Titanium Metal Foams
,”
J. Mater. Sci.
, Vol.
40
, No.
22
,
2005
, pp.
5793
5799
. https://doi.org/10.1007/s10853-005-4993-x
14.
Gibson
,
L. J.
and
Ashby
,
M. F.
,
Cellular Solids, Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
,
1997
.
15.
Li
,
J. P.
,
Li
,
S. H.
,
Groot
,
K.
, and
Layrolle
,
P.
, “
Preparation and Characterization of Porous Titanium
,”
Key Eng. Mater.
, Vols.
218–220
, No.
4
,
2002
, pp.
51
54
. https://doi.org/10.4028/www.scientific.net/KEM.218-220.51
16.
Kotan
,
G.
and
Bor
,
A. S.
, “
Production and Characterization of High Porosity Ti-6Al-4V Foam by Space Holder Technique in Powder Metallurgy
,”
Turk. J. Eng. Env. Sci.
, Vol.
31
, No.
3
,
2007
, pp.
149
156
.
17.
Esen
,
Z.
and
Bor
,
S.
, “
Processing of Titanium Foams Using Magnesium Spacer Particles
,”
Scr. Mater.
, Vol.
56
, No.
5
,
2007
, pp.
341
344
. https://doi.org/10.1016/j.scriptamat.2006.11.010
18.
Dunand
,
D. C.
, “
Processing of Titanium Foams
,”
Adv. Eng. Mater.
, Vol.
6
, No.
6
,
2004
, pp.
369
376
. https://doi.org/10.1002/adem.200405576
19.
Imwinkelried
,
T.
, “
Mechanical Properties of Open-Pore Titanium Foam
,”
J. Biomed. Mater. Res. A
, Vol.
81
, No.
4
,
2007
, pp.
964
970
. https://doi.org/10.1002/jbm.a.31118
20.
Lefebure
,
L. P.
and
Baril
,
E.
, “
Porous Metals and Metallic Foams: Current Status and Recent Developments
,”
Adv. Eng. Mater.
, Vol.
10
, No.
9
,
2008
, pp.
868
876
. https://doi.org/10.1002/adem.200800122
21.
Wen
,
C. E.
,
Yamada
,
Y.
,
Shimijima
,
K.
,
Chino
,
Y.
,
Asahina
,
T.
, and
Mabuchi
,
M.
, “
Processing and Mechanical Properties of Autogenous Titanium Implant Materials
,”
J. Mater. Sci. Mater. Med.
, Vol.
13
, No.
4
,
2002
, pp.
307
401
. https://doi.org/10.1023/A:1014019103240
22.
Wen
,
C. E.
,
Mabuchi
,
M.
,
Yamada
,
Y.
,
Shimojima
,
K.
,
Chino
,
Y.
, and
Asahina
,
T.
, “
Processing of Biocompatible Porous Ti and Mg
,”
Scr. Mater.
, Vol.
45
, No.
10
,
2001
, pp.
1147
1153
. https://doi.org/10.1016/S1359-6462(01)01132-0
23.
Laptev
,
A.
,
Vyal
,
O.
,
Bram
,
M.
,
Buchkremer
,
H. P.
, and
Stover
,
D.
, “
Green Strength of Powder Compacts Provided for Production of Highly Porous Titanium Parts
,”
Powder Metall.
, Vol.
48
, No.
4
,
2005
, pp.
358
364
. https://doi.org/10.1179/174329005X73838
24.
Mansourighasri
,
A.
,
Muhamad
,
N.
, and
Sulong
,
A. B.
, “
Processing Titanium Foams Using Tapioca Starch as a Space Holder
,”
J. Mater. Proc. Technol.
, Vol.
212
, No.
1
,
2012
, pp.
83
89
. https://doi.org/10.1016/j.jmatprotec.2011.08.008
25.
Bansiddhi
,
A.
and
Dunand
,
D. C.
, “
Titanium and NiTi Foams for Replacing Bone
,”
Acta Biomater.
, Vol.
4
,
2008
, pp.
1996
2007
. https://doi.org/10.1016/j.actbio.2008.06.005
26.
Xue
,
X.-B.
,
Wang
,
L.-Q.
,
Wang
,
M.-M.
,
Lu
,
W.-J.
, and
Zhang
,
D.
, “
Manufacturing, Compressive Behaviour and Elastic Modulus of Ti Matrix Syntactic Foam Fabricated by Powder Metallurgical
,”
Trans. Nonferous Met. Soc., China
, Vol.
22
,
2012
, pp.
188
192
. https://doi.org/10.1016/S1003-6326(12)61707-5
27.
Aydogmus
,
T.
and
Bor
,
S.
, “
Processing of Porous TiNi Alloys Using Magnesium as Space Holder
,”
Alloys Compounds
, Vol.
478
, Nos.
1–2
,
2009
, pp.
705
710
. https://doi.org/10.1016/j.jallcom.2008.11.141
28.
Balch
,
D. K.
,
Dwyer
,
J. G. O.
,
Davis
,
G. R.
,
Cady
,
C. M.
,
Gray
,
G. T.
, and
Dunand
,
D. C.
, “
Plasticity and Damage in Aluminum Syntactic Foams Deformed Under Dynamic and Quasi-Static Conditions
,”
Mater. Sci. Eng. A
, Vol.
391
, Nos.
1–2
,
2005
, pp.
408
417
. https://doi.org/10.1016/j.msea.2004.09.012
29.
Kiser
,
M.
,
He
,
M. Y.
, and
Zek
,
F. W.
, “
Mechanical Response of Ceramic Microballoon Reinforced Aluminum Matrix Composites Under Compressive Loading
,”
Acta Mater.
, Vol.
47
, No.
9
,
1999
, pp.
2685
2694
. https://doi.org/10.1016/S1359-6454(99)00129-9
30.
Wheeler
,
K. R.
,
Karagianes
,
M. T.
, and
Sump
,
K. R.
, “
Porous Titanium Alloy for Prosthesis Attachment, Titanium Alloys in Surgical Implants
,”
ASTM STP 796
Luckey
H. A.
and
Kubli
,
Fred
 Jr.
, Eds.,
American Society for Testing and Materials
,
1983
, pp.
241
254
, http://dx.doi.org/10.1520/STP796-EB https://doi.org/10.1520/STP796-EB
31.
Mondal
,
D. P.
,
Das
,
S.
, and
Jha
,
N.
, “
Dry Sliding Wear Behaviour of Aluminum Syntactic Foam
,”
Mater. Des.
, Vol.
30
, No.
7
,
2009
, pp.
2563
2568
. https://doi.org/10.1016/j.matdes.2008.09.034
32.
Wu
,
G. H.
,
Dou
,
Z. Y.
,
Sun
,
D. L.
,
Jiang
,
L. T.
,
Ding
,
B. S.
, and
He
,
B. F.
, “
Compression Behaviors of Cenosphere-Pure Aluminum Syntactic Foams
,”
Scr. Mater.
, Vol.
56
, No.
3
,
2007
, pp.
221
224
. https://doi.org/10.1016/j.scriptamat.2006.10.008
33.
Balch
,
D. K.
and
Dunand
,
D. C.
, “
Load Portioning in Aluminium Syntactic Foams Containing Ceramic Microspheres
,”
Acta Mater.
, Vol.
54
, No.
6
,
2006
, pp.
1501
1510
, http://dx.doi.org/10.1016/j.actamat.2005.11.017 https://doi.org/10.1016/j.actamat.2005.11.017
34.
Wu
,
G. H.
,
Dou
,
Z. Y.
,
Jiang
,
L. T.
, and
Cao
,
J. H.
, “
Damping Properties of Aluminium Matrix-Fly Ash Composites
,”
Mater. Lett.
, Vol.
60
, No.
24
,
2006
, pp.
2945
2950
. https://doi.org/10.1016/j.matlet.2006.02.018
35.
Mondal
,
D. P.
,
Khedle
,
R.
,
Badkul
,
A.
,
Jha
,
N.
, and
Das
,
S.
, “
Closed Cell Aluminium-Cenosphere Foam With Hybrid Porosity Through Stir-Casting Technique
,”
Indian Foundry J.
, Vol.
58
, No.
11
,
2012
, pp.
31
38
.
36.
Mondal
,
D. P.
,
Majumdar
,
J. D.
,
Jha
,
N.
,
Badkul
,
A.
,
Das
,
S.
,
Patel
,
A.
, and
Gupta
,
G.
, “
Titanium-Cenosphere Syntactic Foam Made Through Powder Metallurgy Route
,”
Mater. Des.
, Vol.
34
,
2012
, pp.
82
89
. https://doi.org/10.1016/j.matdes.2011.07.055
37.
Jha
,
N.
,
Mondal
,
D. P.
,
Majumdar
,
J. D.
,
Badkul
,
A.
,
Jha
,
A. K.
, and
Khare
,
A. K.
, “
Highly Porous Open Cell Ti-Foam Using NaCl as Temporary Space Holder Through Powder Metallurgy Route
,”
Mater. Des.
, Vol.
47
,
2013
, pp.
810
819
. https://doi.org/10.1016/j.matdes.2013.01.005
38.
Greiner
,
C.
,
Oppenheimer
,
S. M.
, and
Dunand
,
D. C.
, “
High Strength, Low Stiffness, Porous NiTi With Superelastic Properties
,”
Acta Biomater.
, Vol.
1
,
2005
, pp.
705
716
. https://doi.org/10.1016/j.actbio.2005.07.005
39.
Niu
,
W.
,
Bai
,
C.
,
Qiu
,
G. B.
, and
Wang
,
Q.
, “
Processing and Properties of Porous Titanium Using Space Holder Technique
,”
Mater. Sci. Eng. A
, Vol.
506
,
2009
, pp.
148
151
. https://doi.org/10.1016/j.msea.2008.11.022
40.
Andrews
,
A.
,
Sanders
,
W.
, and
Gidson
,
L. J.
, “
Compressive and Tensile Behaviour of Aluminum Foams
,”
Mater. Sci. Eng. A
, Vol.
270
, No.
2
,
1999
, pp.
113
124
. https://doi.org/10.1016/S0921-5093(99)00170-7
41.
Shen
,
J.
,
Lu
,
G.
, and
Ruan
,
D.
, “
Compressive Behaviour of Closed-Cell Aluminium Foams at High Strain Rates
,”
Compos. Part B
, Vol.
41
, No.
8
,
2010
, pp.
678
685
. https://doi.org/10.1016/j.compositesa.2010.01.018
42.
Rajendran
,
R.
,
Moorthi
,
A.
, and
Basu
,
S.
, “
Numerical Simulation of Drop Weight Impact Behaviour of Closed Cell Aluminium Foam
,”
Mater. Des.
, Vol.
30
, No.
8
,
2009
, pp.
2823
2830
. https://doi.org/10.1016/j.matdes.2009.01.026
43.
Aktay
,
L.
,
Kroplin
,
B. H.
,
Toksoy
,
A. K.
, and
Guden
,
M.
, “
Finite Element and Coupled Finite Element/Smooth Particle Hydrodynamics Modeling of the Quasi-Static Crushing of Empty and Foam-Filled Single, Bitubular and Constraint Hexagonal- and Square-Packed Aluminum Tubes
,”
Mater. Des.
, Vol.
29
, No.
5
,
2008
, pp.
952
962
. https://doi.org/10.1016/j.matdes.2007.03.019
44.
Mandal
,
D. P.
,
Majumdar
,
D. D.
,
Bharti
,
R. K.
, and
Majumdar
,
J. D.
, “
Microstructural Characterization and Property Evaluation of Titanium Cenosphere Syntactic Foam Developed by Powder Metallurgy Route
,”
Powder Metall.
, Vol.
58
, No.
4
,
2015
, pp.
289
299
. https://doi.org/10.1179/1743290115Y.0000000012
45.
Mondal
,
D. P.
,
Majumdar
,
J. D.
,
Goel
,
M. D.
, and
Gupta
,
G.
, “
Characteristics and Wear Behavior of Cenosphere Dispersed Titanium Matrix Composite Developed by Powder Metallurgy Route
,”
Trans. Nonferrous Met. Soc. China
, Vol.
24
, No.
5
,
2014
, pp.
1379
1386
. https://doi.org/10.1016/S1003-6326(14)63202-7
46.
Jha
,
N.
,
Mondal
,
D. P.
,
Goel
,
M. D.
,
Majumdar
,
J. D.
,
Das
,
S.
, and
Modi
,
O. P.
, “
Titanium Cenosphere Syntactic Foam With Coarser Cenosphere Fabricated by Powder Metallurgy at Lower Compaction Load
,”
Trans. Nonferrous Met. Soc. China
, Vol.
24
, No.
1
,
2014
, pp.
89
99
. https://doi.org/10.1016/S1003-6326(14)63032-6
47.
Mondal
,
D. P.
,
Jain
,
H.
,
Das
,
S.
, and
Jha
,
A. K.
, “
Stainless Steel Foams Made Through Powder Metallurgy Route Using NH4HCO3 as Space Holder
,”
Mater. Des.
, Vol.
888
,
2015
, pp.
430
437
. https://doi.org/10.1016/j.matdes.2015.09.020
48.
Mondal
,
D. P.
,
Jha
,
N.
,
Badkul
,
A.
,
Das
,
S.
, and
Khedle
,
R.
, “
High Temperature Compressive Deformation Behaviour of Aluminum Syntactic Foam
,”
Mater. Sci. Eng. A
, Vol.
534
, pp.
521
529
. https://doi.org/10.1016/j.msea.2011.12.002
This content is only available via PDF.
You do not currently have access to this content.