Abstract

A new model of the effective thermal conductivity of randomly distributed loads of mono-sized metal parts of arbitrary geometry heated under natural convective and radiation heat transfer has been developed. A series of transient heating experiments has been performed in a batch-type furnace using loads comprised of parts of various geometries, sizes, steel grades, and void fractions and at various furnace set point temperatures. Experimental results showed a strong dependency of the load effective thermal conductivity on: (1) load void fraction, (2) internal radiation between parts, and (3) external radiation between parts and furnace enclosure. An assessment of a number of effective thermal conductivity models reported in the literature and developed for packed beds and porous media has been carried out. This assessment led to the development of the present model, which incorporates a new additional temperature difference term that accounts for external radiation and a new generalized characteristic length scale that can be used for parts of any arbitrary geometry. All thermophysical properties of solid and gaseous phases have been considered as functions of the parts temperature. The proposed model is in good agreement, within ±25 %, with the experimental data obtained for the various part geometries, load void fractions, and the surrounding temperatures considered in this investigation.

References

1.
Hassan
,
A. A.
and
Hamed
,
M. S.
, “
Optimization of Energy Utilization and Productivity of Heat Treating Batch-Type Furnaces
,”
J. ASTM Int.
, Vol.
5
, No.
1
,
2008
, pp.
1
17
.
2.
Hassan
,
A. A.
and
Hamed
,
M. S.
, “
Model-Based Optimization of the Heat Treatment of Randomly Packed Load in Mesh Belt Multi-Zone Continuous Furnaces
,”
Mater. Sci. Forum
, Vols.
706–709
,
2012
, pp.
289
294
.
3.
Harish
,
J.
and
Dutta
,
P.
, “
Heat Transfer Analysis of Pusher Type Reheat Furnace
,”
Ironmaking Steelmaking
, Vol.
32
, No.
2
,
2005
, pp.
151
158
. https://doi.org/10.1179/174328105X23923
4.
Kim
,
M. Y.
, “
A Heat Transfer Model for the Analysis of Transient Heating of the Slab in a Direct-Fired Walking Beam Type Reheating Furnace
,”
Int. J. Heat Mass Transfer
, Vol.
50
, No.
19
,
2007
, pp.
3740
3748
. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.023
5.
Chapman
,
K. S.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
, “
Modeling and Parametric Studies of Heat Transfer in a Direct-Fired Continuous Reheating Furnace
,”
Metall. Trans. B.
, Vol.
22B
, No.
4
,
1991
, pp.
513
521
. https://doi.org/10.1007/BF02654290
6.
Marino
,
P.
,
Pignotti
,
A.
, and
Solis
,
D.
, “
Numerical Model of Steel Slab Reheating in Pusher Furnaces
,”
Lat. Am. Appl. Res.
, Vol.
32
, No.
3
,
2002
, pp.
257
261
.
7.
Jeong
,
S. H.
,
Yi
,
J. J.
,
Kim
,
J. K.
, and
Ha
,
M. Y.
, “
Computer Modeling of the Continuous Annealing Furnace
,”
KSME J.
, Vol.
5
, No.
1
,
1991
, pp.
16
21
. https://doi.org/10.1007/BF02945146
8.
Sahay
,
S. S.
and
Kapur
,
P. C.
, “
Model Based Scheduling of a Continuous Annealing Furnace
,”
Ironmaking Steelmaking
, Vol.
34
, No.
3
,
2007
, pp.
262
268
. https://doi.org/10.1179/174328107X165708
9.
Kang
,
J.
,
Huang
,
T.
,
Purushothaman
,
R.
,
Wang
,
W.
, and
Rong
,
Y.
, “
Modeling and Simulation of Heat Transfer in Loaded Continuous Heat Treatment Furnace
,”
Trans. Mater. Heat Treat.
, Vol.
25
, No.
5
,
2004
, pp.
764
768
.
10.
Çengel
,
Y. A.
,
Heat and Mass Transfer: A Practical Approach
, 3rd ed.,
McGraw-Hill
,
New York
,
2006
.
11.
van Antwerpen
,
W.
,
du Toit
,
C. G.
, and
Rousseau
,
P. G.
, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Design
, Vol.
240
, No.
7
,
2010
, pp.
1803
1818
. https://doi.org/10.1016/j.nucengdes.2010.03.009
12.
Balakrishnan
,
A. R.
and
Pei
,
D. C. T.
, “
Heat Transfer in Gas-Solid Packed Bed Systems, a Critical Review
,”
Ind. Eng. Chem. Proc. Des. Dev.
, Vol.
18
, No.
l
,
1979
, pp.
30
40
. https://doi.org/10.1021/i260069a003
13.
Tsotsas
,
E.
and
Martin
,
H.
, “
Thermal Conductivity of Packed Beds: A Review
,”
Chem. Eng. Proc.
, Vol.
22
, No.
1
,
1987
, pp.
19
37
. https://doi.org/10.1016/0255-2701(87)80025-9
14.
Gonzo
,
E. E.
, “
Estimating Correlations for the Effective Thermal Conductivity of Granular Materials
,”
Chem. Eng. J.
, Vol.
90
, No.
3
,
2002
, pp.
299
302
. https://doi.org/10.1016/S1385-8947(02)00121-3
15.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
,
Handbook of Heat Transfer Applications
,
McGraw-Hill
,
New York
,
1985
.
16.
Vafai
,
K.
, Ed.,
Handbook of Porous Media
,
Marcel Dekker
,
New York
,
2000
.
17.
Kaviany
,
M.
,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer
,
New York
,
1995
, pp.
129
131
.
18.
Kunii
,
D.
and
Smith
,
J. M.
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
, Vol.
6
, No.
1
,
1960
, pp.
71
78
. https://doi.org/10.1002/aic.690060115
19.
Schotte
,
W.
, “
Thermal Conductivity of Packed Beds
,”
AIChE J.
, Vol.
6
, No.
1
,
1960
, pp.
63
67
. https://doi.org/10.1002/aic.690060113
20.
Woodside
,
W.
and
Messmer
,
J. H.
, “
Thermal Conductivity of Porous Media. I: Unconsolidated Sands
,”
J. Appl. Phys.
, Vol.
32
, No.
9
,
1961
, pp.
1688
1699
. https://doi.org/10.1063/1.1728419
21.
Woodside
,
W.
and
Messmer
,
J. H.
, “
Thermal Conductivity of Porous Media. II: Consolidated Sands
,”
J. Appl. Phys.
Vol.
32
, No.
9
,
1961
, pp.
1699
1706
. https://doi.org/10.1063/1.1728420
22.
Hashin
,
Z.
and
Shtrikman
,
S.
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
Vol.
33
, No.
10
,
1962
, pp.
3125
3131
. https://doi.org/10.1063/1.1728579
23.
Krupiczka
,
R.
, “
Analysis of Thermal Conductivity in Granular Materials
,”
Int. Chem. Eng.
, Vol.
7
, No.
1
,
1966
, pp.
122
144
.
24.
Miller
,
M.
, “
Bounds for Effective Electrical, Thermal and Magnetic Properties of Heterogeneous Materials
,”
J. Math. Phys.
, Vol.
10
, No.
11
,
1969
, pp.
1988
2004
. https://doi.org/10.1063/1.1664794
25.
Chang
,
H. C.
, “
Multi–Scale Analysis of Effective Transport in Periodic Heterogeneous Media
,”
Chem. Eng. Commun.
, Vol.
15
, Nos.
1–4
,
1982
, pp.
83
91
. https://doi.org/10.1080/00986448208911060
26.
Mohamed
,
A. A.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
, “
Modelling of Combustion and Heat Transfer in a Packed Bed With Embedded Coolant Tubes
,”
Int. J. Heat Mass Transfer
, Vol.
37
, No.
8
,
1994
, pp.
1181
1191
. https://doi.org/10.1016/0017-9310(94)90204-6
27.
Juul
,
N. H.
, “
Investigation of Approximate Methods for Calculation of the Diffuse Radiation Configuration View Factors Between Two Spheres
,”
Lett. Heat Mass Transfer
, Vol.
3
, No.
6
,
1976
, pp.
513
522
. https://doi.org/10.1016/0094-4548(76)90006-0
28.
Tavman
,
I. H.
, “
Effective Thermal Conductivity of Granular Porous Materials
,”
Int. Commun. Heat Mass Transfer
, Vols.
23
, No.
2
,
1996
, pp.
169
176
. https://doi.org/10.1016/0735-1933(96)00003-6
29.
Mackay
,
C. O.
and
Wright
,
L. T.
, “
Periodic Heat Flow
,”
Heat Pip. Air Cond.
, Vol.
16
, No.
1
,
1944
, pp.
546
556
.
30.
Torres-Reyes
,
E.
,
Picon-Nunez
,
M.
, and
Gortari
,
C.
, “
Energy Analysis and Optimization of a Solar-Assisted Heat Pump
,”
Energy
, Vol.
23
, No.
4
,
1998
, pp.
337
344
. https://doi.org/10.1016/S0360-5442(97)00079-0
31.
Drosg
,
M.
,
Dealing With Uncertainties: A Guide to Error Analysis
, 2nd ed.,
Springer
,
New York
,
2009
.
This content is only available via PDF.
You do not currently have access to this content.