Abstract

Composite components frequently contain porosity or defects, which might, in some circumstances, be deemed benign. Other defects could lead to progressive or sudden failure in service; hence reliable and accurate material condition monitoring and health assessment is an important prerequisite for further design for the use of composite materials in high duty and life sensitive engineering components. The objective of this paper was to demonstrate the use of explicit finite element as an effective development tool in the development of ultrasound testing methodologies for the characterization of porosity in composites – a virtual ultrasound vibration laboratory. This would enable an improved inspection sentencing capability for as-manufactured composite structural components. It would also be of benefit in sentencing components subject to foreign object damage (FOD) in order to determine whether the component can continue in service, possibly with in-service monitoring or cosmetic repair, or must be condemned. In this work, finite element models simulating damage and porosity were presented. The models were compared with ultrasound tests on real specimens with practically relevant defects. Experimental tests, making use of wave superposition from two piezo-electric vibration sources, were shown to detect energy absorbing damage in the specimen, such as might have been created by impact or crush loads. The same piezo-electric vibration system was also used to measure the dissipated energy. Computational analysis, using simple material model variations, was able to replicate the Lamb wave generation and evolve a wave form resembling a “standing wave.” The computational material model was modified to represent porosity in composites.

References

1.
Ashby
,
M. F.
,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
,
Boston, MA
,
2005
.
2.
Cantwell
,
W. J.
and
Morton
,
J.
, “
The Impact Resistance of Composite Materials—A Review
,”
Composites
, Vol.
22
, No.
5
,
1991
, pp.
347
362
. https://doi.org/10.1016/0010-4361(91)90549-V
3.
Yang
,
F. J.
and
Cantwell
,
W. J.
, “
Impact Damage Initiation in Composite Materials
,”
Compos. Sci. Technol.
, Vol.
70
, No.
2
,
2010
, pp.
336
342
. https://doi.org/10.1016/j.compscitech.2009.11.004
4.
Kostka
,
P.
,
Holeczek
,
K.
, and
Hufenbach
,
W.
,
Characterisation of Impact-Caused Changes of the Anisotropic Material Damping of Composite Laminates
,
Venice, Italy
, available at http://www.escm.eu.org/eccm15/start.html
5.
McMillan
,
A. J.
,
Monroy Aceves
,
C.
, and
Sutcliffe
,
M. P. F.
, “
Moderate Energy Impact Analysis Combining Phenomenological Contact Law With Localized Damage and Integral Equation Method
,”
Int. J. Impact Eng.
, Vol.
43
,
2012
, pp.
29
39
. https://doi.org/10.1016/j.ijimpeng.2011.11.008
6.
Nicolais
,
L.
,
Meo
,
M.
, and
Milella
,
E.
,
Composite Materials: A Vision for the Future
,
Springer
,
New York
,
2011
.
7.
Farrar
,
C. R.
and
Lieven
,
N.
, “
Damage Prognosis: The Future of Structural Health Monitoring
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
, Vol.
365
, No.
1851
,
2007
, pp.
623
632
. https://doi.org/10.1098/rsta.2006.1927
8.
Hao
,
S.
,
Strom
,
B. W.
,
Gordon
,
G.
,
Krishnaswamy
,
S.
, and
Achenbach
,
J. D.
, “
Scattering of the Lowest Lamb Wave Modes by a Corrosion Pit
,”
Res. Nondestruct. Eval.
, Vol.
22
, No.
4
,
2011
, pp.
208
230
. https://doi.org/10.1080/09349847.2011.594766
9.
McMillan
,
A. J.
, “
Geometry Generation Challenges for Modelling and Analysis of Micro-Structured Materials
,”
J. Phys. Confr. Series: Mater. Sci. Eng.
, Vol.
74
,
2015
, 012010. https://doi.org/10.1088/1757-899X/2074/1/012010
10.
McMillan
,
A. J.
, “
Defect Identification and Characterization Algorithms for Assessing Effect on Component Strength
,”
Proceedings of the 15th European Conference on Composite Materials
, Venice, Italy, June 24–28,
2012
,
ESCM
,
Sevilla, Spain
,
1
8
. https://doi.org/http://www.escm.eu.org/eccm1
11.
McMillan
,
A. J.
,
Archer
,
E.
,
McIlhagger
,
A.
, and
Lelong
,
G.
, “
Strength Knock-Down Assessment of Porosity in Composites: Modelling, Characterizing and Specimen Manufacture
,”
J. Phys. Confr. Series: Mater. Sci. Eng.
, Vol.
382
,
2012
, 012027. https://doi.org/10.1088/1742-6596/382/1/012027
12.
McMillan
,
A. J.
, “
Material Strength Knock-Down Resulting From Multiple Randomly Positioned Voids
,”
J. Reinforced Plast. Compos.
, Vol.
31
, No.
1
,
2012
, pp.
13
28
. https://doi.org/10.1177/0731684411422614
13.
Montalvao
,
D.
, “
A Review of Vibration-Based Structural Health Monitoring With Special Emphasis on Composite Materials
,”
Shock Vib. Digest
, Vol.
38
, No.
4
,
2006
, pp.
295
324
. https://doi.org/10.1177/0583102406065898
14.
Kostka
,
P.
,
Holeczek
,
K.
,
Filippatos
,
A.
,
Langkamp
,
A.
, and
Hufenbach
,
W.
, “
In Situ Integrity Assessment of a Smart Structure Based on the Local Material Damping
,”
J. Intell. Mater. Syst. Struct.
, Vol.
24
, No.
3
,
2013
, pp.
299
309
. https://doi.org/10.1177/1045389X12462650
15.
Smith
,
C. B.
and
Wereley
,
N. M.
, “
Transient Analysis for Damping Identification in Rotating Composite Beams With Integral Damping Layers
,”
Smart Mater. Struct.
, Vol.
5
, No.
5
, p.
540
550
. https://doi.org/10.1088/0964-1726/5/5/004
16.
Kostka
,
P.
,
Holeczek
,
K.
, and
Hufenbach
,
W.
, “
A New Methodology for the Determination of Material Damping Distribution Based on Tuning the Interference of Solid Waves
,”
Eng. Struct.
, Vol.
83
,
2015
, pp.
1
6
. https://doi.org/10.1016/j.engstruct.2014.10.046
17.
McMillan
,
A. J.
, “
Computational Modeling of Ultrasound Propagation Using Abaqus Explicit
,”
Proceedings of the Simulia UK Regional Users Meeting
, Crewe, UK, September 18–19,
2013
,
Dassault Systemes
,
Vélizy-Villacoublay, France
, pp.
1
15
.
18.
Kostka
,
P.
,
Holeczek
,
K.
,
Hufenbach
,
W.
, and
Langkamp
,
A.
, “
Verfahren zur Identifikation lokaler Werkstoffdämpfung in Verbund-Strukturen [A method for the identification of local material damping properties in composite structures]
,” No. EP 2 696 184 A2,
2014
.
19.
Holeczek
,
K.
,
Kostka
,
P.
, and
Modler
,
N.
, “
Dry Friction Contribution to Damage-Caused Increase of Damping in Fiber-Reinforced Polymer-Based Composites
,”
Adv. Eng. Mater.
, Vol.
16
, No.
10
,
2014
, pp.
1284
1292
. https://doi.org/10.1002/adem.201400293
20.
Riande
,
E.
,
Diaz-Calleja
,
R.
,
Prolongo
,
M.
,
Masegosa
,
R.
, and
Salom
,
C.
,
Polymer Viscoelasticity: Stress and Strain in Practice
,
Taylor & Francis
,
London
,
1999
.
21.
Bhalla
,
S.
and
Kiong Soh
,
C.
, “
Structural Impedance Based Damage Diagnosis by Piezo-Transducers
,”
Earthq. Eng. Struct. Dyn.
, Vol.
32
, No.
12
,
2003
, pp.
1897
1916
. https://doi.org/10.1002/eqe.307
22.
Su
,
Z.
and
Ye
,
L.
,
Identification of Damage Using Lamb Waves: From Fundamentals to Applications
,
Springer Science & Business Media
,
New York
,
2009
.
23.
Hosseini
,
S. M.
,
Duczek
,
S.
, and
Gabbert
,
U.
, “
Non-Reflecting Boundary Condition for Lamb Wave Propagation Problems in Honeycomb and CFRP Plates Using Dashpot Elements
,”
Compos. Part B: Eng.
, Vol.
54
,
2013
, pp.
1
10
. https://doi.org/10.1016/j.compositesa.2013.07.001
24.
Drozdz
,
M. B.
,
2008
, “
Efficient Finite Element Modelling of Ultrasound Waves in Elastic Media
,” Ph.D. thesis,
University of London
, London.
25.
Jahanbin
,
M.
, private communication, December 1–3,
2015
.
26.
Dassault Systèmes Simulia Corp.
,
ABAQUS/Standard User Manual
, version 6.14,
Dassault Systèmes
,
Vélizy-Villacoublay, France
,
2014
.
27.
Achenbach
,
J.
,
Wave Propagation in Elastic Solids
,
Elsevier
,
Amsterdam, the Netherlands
,
2012
.
28.
Kolsky
,
H.
,
Stress Waves in Solids
,
Dover Publications
,
New York
,
1963
.
29.
Liu
,
G. R.
and
Xi
,
Z. C.
,
Elastics Waves in Anisotropic Laminates
,
CRC Press
,
Boca Raton, FL
,
2002
.
This content is only available via PDF.
You do not currently have access to this content.