Abstract

In the present study, the feasibility of the production of silicon carbide based ceramics via liquid silicon infiltration process (LSI-process) was demonstrated. The manufactured MiCaSiC ceramics (metal infiltrated carbon based silicon carbide) were based on novel raw material compositions. For these material compositions, activated carbon, carbon fibers, and a sinterable pitch based semi-coke were used as fillers and source of a sufficiently stable carbon backbone in the carbonized intermediate state. Different binder agents were used for the compound and feedstock development and basically compared. This involves thermoplastic and duroplastic binders, which promote the use of two different shaping methods (warm pressing and extrusion process). This allows the formation of highly porous and complex shaped carbon preforms for further silicon infiltration. The main focus of the present study was to evaluate the impact of debinding and pyrolysis process step on the preform microstructure. That includes the determination and quantification of matrix and porosity evolution in carbon preforms. The defined formation of porosity during pyrolysis is a key parameter for subsequent silicon infiltration. In this context, pore structure formation of carbon preforms as well as porosity and microstructural characteristics of carbon preforms, and the resulting MiCaSiC ceramics were investigated by means of computer tomography (CT), scanning electron microscopy (SEM) and porosity measurements. It was shown that pore structure formation and pore content in carbon preform stage was significantly influenced by the thermal decomposition behavior of the preferred binder agents. Furthermore, the microstructure development after pyrolysis was basically affected by the homogenization rate of the material composition as well as material flow kinematics during shaping process.

References

1.
Kollenberg
,
W.
,
Technische Keramik
,
Vulkan-Verlag GmbH
,
Essen, Germany
,
2004
.
2.
Liu
,
G.
,
Li
,
J.
,
Shan
,
Y.
, and
Xu
,
J.
, “
Highly Dense β-SiC Ceramics With Submicron Grains Prepared by Sintering of Nanocrystalline Powders
,”
Scr. Mater.
, Vol.
67
, No.
4
,
2012
, pp.
416
441
. https://doi.org/10.1016/j.scriptamat.2012.05.037
3.
Gadow
,
R.
,
1986
, “
The Siliconization of Carbon
,” Ph.D. thesis,
University of Karlsruhe
, Karlsruhe, Germany.
4.
Wang
,
Y.
,
Tan
,
S.
, and
Jiang
,
D.
, “
The Fabrication of Reaction-Formed Silicon Carbide With Controlled Microstructure by Infiltrating a Pure Carbon Preform With Molten Si
,”
Ceram. Int.
, Vol.
30
, No.
3
,
2004
, pp.
435
439
. https://doi.org/10.1016/S0272-8842(03)00128-7
5.
Wang
,
Y.
,
Tan
,
S.
, and
Jiang
,
D.
, “
The Effect of Porous Carbon Preform and the Infiltration Process on the Properties of Reaction-Formed SiC
,”
Carbon
, Vol.
42
, Nos.
8–9
,
2004
, pp.
1833
1839
. https://doi.org/10.1016/j.carbon.2004.03.018
6.
Singh
,
M.
and
Behrendt
,
D.
, “
Reactive Melt Infiltration of Silicon-Molybdenum Alloys Into Microporous Carbon Preforms
,”
Mater. Sci. Eng. A
, Vol.
194
, No.
2
,
1995
, pp.
193
200
. https://doi.org/10.1016/0921-5093(94)09663-5
7.
Weber
,
S.
,
Jemmali
,
R.
,
Koch
,
D.
, and
Voggenreiter
,
H.
, “
Microstructures and Physical Properties of Biomorphic SiSiC Ceramics Manufactured via LSI-Technique
,”
Proceedings of the 36th International Conference and Expo on Advanced Ceramics and Composites
, Daytona Beach, FL, January 22–27,
2012
,
The American Ceramic Society and The American Ceramic Society's Engineering Ceramics Division
,
Florida
, p. 76.
8.
Weber
,
S.
,
Jemmali
,
R.
, and
Kosh
,
D.
, “
Aktivkohle-Basierte Compoundsysteme als Basiswerkstoff zur Herstellung von komplexen SiSiC-Strukturen [Activated Carbon Based Compound Systems for the Manufacture of Complex Shaped SiSiC Structures]
,” Deutsche Keramische Gesellschaft, Arbeitskreis, Kohlenstoff (AKK),
DLR Internal Report
,
Germany
,
2012
.
9.
Lara
,
A.
,
Muñoz
,
A.
,
Castillo-Rodríguez
,
M.
, and
Domínguez-Rodríguez
,
A.
, “
High-Temperature Compressive Creep of Spark-Plasma Sintered Additive-Free Polycrystalline β-SiC
,”
J. Eur. Ceram. Soc.
, Vol.
32
, No.
12
,
2012
, pp.
3445
3451
. https://doi.org/10.1016/j.jeurceramsoc.2012.04.041
10.
Jang
,
B. K.
and
Sakka
,
Y.
, “
Influence of Microstructure on the Thermophysical Properties of Sintered SiC Ceramics
,”
J. Alloys Compounds
, Vol.
463
, Nos.
1–2
,
2008
, pp.
493
497
. https://doi.org/10.1016/j.jallcom.2007.09.055
11.
Malinge
,
A.
,
Coupé
,
A.
,
Petitcorps
,
Y. L.
, and
Pailler
,
R.
, “
Pressureless Sintering of Beta Silicon Carbide Nanoparticles
,”
J. Eur. Ceram. Soc.
, Vol.
32
, No.
16
,
2012
, pp.
4393
4400
. https://doi.org/10.1016/j.jeurceramsoc.2012.06.008
12.
Weber
,
S.
,
Sommer
,
F.
,
Kern
,
F.
,
Gadow
,
R.
,
Voggenreiter
,
H.
, and
Koch
,
D.
, “
Thermoplastic Forming as an Alternative Shaping Process for Near Net-Shape Production of Green Bodies for C-SiSiC Ceramics Via Liquid Silicon Infiltration (LSI) Process
,”
J. Ceram. Sci. Technol.
, Vol.
5
, No.
3
,
2014
, pp.
223
236
. https://doi.org/10.4416/JCST2014-00011
13.
Kumar
,
S.
,
Kumar
,
A.
,
Devi
,
R.
,
Shukla
,
A.
, and
Gupta
,
A.
, “
Capillary Infiltration Studies of Liquids into 3D-Stitched C–C Preforms: Part B: Kinetics of Silicon Infiltration
,”
J. Eur. Ceram. Soc.
, Vol.
29
, No.
12
,
2009
, pp.
2651
2657
. https://doi.org/10.1016/j.jeurceramsoc.2009.03.006
14.
Kumar
,
S.
,
Kumar
,
A.
,
Shukla
,
A.
,
Gupta
,
A.
, and
Devi
,
R.
, “
Capillary Infiltration Studies of Liquids Into 3D-Stitched C–C Preforms: Part A: Internal Pore Characterization by Solvent Infiltration, Mercury Porosimetry, and Permeability Studies
,”
J. Eur. Ceram. Soc.
, Vol.
29
, No.
12
,
2009
, pp.
2643
2650
. https://doi.org/10.1016/j.jeurceramsoc.2009.03.007
15.
Voytovych
,
R.
,
Israel
,
R.
,
Calderon
,
N.
,
Hodaj
,
F.
, and
Eustathopoulos
,
N.
, “
Reactivity Between Liquid Si or Si Alloys and Graphite
,”
J. Eur. Ceram. Soc.
, Vol.
32
, No.
14
,
2012
, pp.
3825
3835
. https://doi.org/10.1016/j.jeurceramsoc.2012.05.020
16.
Magnant
,
J.
,
Maillé
,
L.
,
Pailler
,
R.
,
Ichard
,
J.-C.
,
Guette
,
A.
,
Rebillat
,
F.
, and
Philippe
,
E.
, “
Carbon Fiber/Reaction-Bonded Carbide Matrix for Composite Materials–Manufacture and Characterization
,”
J. Eur. Ceram. Soc.
, Vol.
32
, No.
16
,
2012
, pp.
4497
4505
. https://doi.org/10.1016/j.jeurceramsoc.2012.06.009
17.
Margiotta
,
J. C.
,
Zhang
,
D.
,
Nagle
,
D. C.
, and
Feeser
,
C. E.
, “
Formation of Dense Silicon Carbide by Liquid Silicon Infiltration of Carbon With Engineered Structure
,”
J. Mater. Res.
, Vol.
23
, No.
5
,
2008
, pp.
1237
1248
. https://doi.org/10.1557/JMR.2008.0167
18.
Nelson
,
E. S.
and
Colella
,
P.
, “
Parametric Study of Reactive Melt Infiltration
,”
Proceedings of the 1999 International Mechanical Engineering Congress and Exposition
, Nashville, Tennessee, November 14–19,
1999
,
ASME
,
New York
, pp.
1
12
.
19.
Xu
,
S.
,
Qiao
,
G.
,
Li
,
D.
,
Yang
,
H.
,
Liu
,
Y.
, and
Lu
,
T.
, “
Reaction Forming of Silicon Carbide Ceramic Using Phenolic Resin Derived Porous Carbon Preform
,”
J. Eur. Ceram. Soc.
, Vol.
29
, No.
11
,
2009
, pp.
2395
2402
.
20.
Li
,
S.
,
Zhang
,
Y.
,
Han
,
J.
, and
Zhou
,
Y.
, “
Effect of Carbon Particle and Carbon Fiber on the Microstructure and Mechanical Properties of Short Fiber Reinforced Reaction Bonded Silicon Carbide Composite
,”
J. Eur. Ceram. Soc.
, Vol.
33
, No.
4
,
2012
, pp.
887
896
. https://doi.org/10.1016/j.jeurceramsoc.2012.10.026
21.
Li
,
S.
,
Zhang
,
Y.
,
Han
,
J.
, and
Zhou
,
Y.
, “
Random Chopped Fibers in Reaction Bonded SiC Composite: Morphology, Etching and Reinforcing Properties
,”
Mater. Sci. Eng. A
, Vol.
551
,
2012
, pp.
104
110
. https://doi.org/10.1016/j.msea.2012.04.102
22.
ISO 1183-1:2004
:
Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pyknometer Method and Titration Method
,
ISO
,
Geneva, Switzerland
,
2004
.
This content is only available via PDF.
You do not currently have access to this content.