Abstract

There are only two kinds of qualitative methods for the estimation of aluminum alloy structures: (1) bar charts (degree of eutectic fineness, porosity content, etc.), and (2) atlases of microstructures, mainly for rejection (overheating, for example). In this paper, the development of quantitative methods for the characterization of hypoeutectic Al-Si-Cu as-cast alloy microstructures using panoramic image analysis is described. As-cast and solution-annealed Al-6Si-2Cu alloy microstructures were studied. Parameters for monitoring the quality of the structure of this alloy were proposed. New algorithms for automatic estimation of eutectic fineness and its volume fraction were developed. Correlations among different microstructural parameters were found and interpreted using thermodynamic simulation. The grade of porosity according to GOST 1583-93 versus pore volume fraction, calculated by ASTM E1245, was defined. Bar charts for estimation of the average length of eutectic silicon particles were proposed. The eutectic modification grade, according to the American Foundry Society chart for microstructure control of hypoeutectic alloys, versus both the length and the elongation of eutectic silicon particles was determined. The relationships between alloy hardness and tensile elongation versus the proposed microstructural parameters for Al-6Si-2Cu alloy were defined. These relationships describe various grades of hypoeutectic Al-Si-Cu alloys in both the as-cast and as-solution-annealed conditions.

References

1.
GOST 1583-93,
Aluminium Casting Alloys. Specifications
,
Izdatelstvo Standartov
,
Moscow
,
2003
.
2.
Bale
,
C. W.
,
Chartrand
,
P.
,
Degterov
,
S. A.
,
Eriksson
,
G.
,
Hack
,
K.
,
Ben Mahfoud
,
R.
,
Melançon
,
J.
,
Pelton
,
A. D.
, and
Petersen
,
S.
, “
FactSage Thermochemical Software and Databases
,”
Calphad
, Vol.
26
, No.
2
,
2002
, pp.
189
228
. https://doi.org/10.1016/S0364-5916(02)00035-4
3.
ASTM E1245-03,
Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
4.
Belov
,
N. A.
, “
Fazovij sostav promishlennih i perspectivnih aluminievih splavov
” [Phase Composition of Industrial and Advanced Aluminum Alloys],
MISiS
,
Moscow
,
2010
.
5.
Zolotorevsky
,
V. S.
and
Belov
,
N. A.
, “
Metallovedenie litejnih aluminievih splavov
” [Metallurgy of Cast Aluminum Alloys],
MISiS
,
Moscow
,
2005
.
6.
Mondolfo
,
L. F.
,
Aluminum Alloys: Structure and Properties
,
Butterworth-Heinemann
,
London
,
1976
.
7.
Zeren
,
M.
,
Karakulak
,
E.
, and
Gümüş
,
S.
, “
Influence of Cu Addition on Microstructure and Hardness of Near-Eutectic Al-Si-xCu Alloys
,”
Trans. Nonferr. Metals Soc. China
, Vol.
21
, No.
8
,
2011
, pp.
1698
1702
. https://doi.org/10.1016/S1003-6326(11)60917-5
8.
Rana
,
R. S.
,
Purohit
,
R.
, and
Das
,
S.
, “
Reviews on the Influences of Alloying Elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites
,”
Int. J. Sci. Res. Publ.
, Vol.
2
, No.
6
,
2012
, pp.
54
60
.
9.
Requena
,
G.
,
Garcés
,
G.
,
Asghar
,
Z.
,
Marks
,
E.
,
Staron
,
P.
, and
Cloetens
,
P.
, “
The Effect of the Connectivity of Rigid Phases on Strength of Al-Si Alloys
,”
Adv. Eng. Mater.
, Vol.
13
, No.
8
,
2011
, pp.
674
684
. https://doi.org/10.1002/adem.201000292
10.
Kazakov
,
A. A.
,
Kazakova
,
E. I.
,
Kiselev
,
D. V.
, and
Motovilina
,
G. D.
, “
Razrabotka metodov ocenki microstructurnoj neodnorodnosti trubnih stalej
” [The Development of Methods for Pipe Steels Microstructural Heterogeneity Estimation],
Chernye Metally
, No.
12
,
2009
, pp.
12
15
.
11.
American Foundry Society (AFS)
,
Chart for Microstructure Control in Hypoeutectic Aluminum Silicon Alloys
,
American Foundry Society
,
Des Plaines, IL
,
1986
.
12.
Pratt
,
W. K.
,
Digital Image Processing: PIKS Inside
, 3rd ed.,
Wiley
,
New York
,
2002
. https://doi.org/10.1002/0471221325
13.
Taylor
,
J. A.
, “
Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys
,”
Proc. Mater. Sci.
, Vol.
1
,
2012
, pp.
19
33
. https://doi.org/10.1016/j.mspro.2012.06.004
14.
Dobrzañski
,
L. A.
,
Maniara
,
R.
, and
Sokolowski
,
J. H.
, “
The Effect of Cooling Rate on Microstructure and Mechanical Properties of AC AlSi9Cu Alloy
,”
Arch. Mater. Sci. Eng.
, Vol.
28
, No.
2
,
2007
, pp.
105
112
.
15.
Hajkowski
,
M.
,
Bernat
,
Ł.
, and
Hajkowski
,
J.
, “
Mechanical Properties of Al-Si-Mg Alloy Castings as a Function of Structure Refinement and Porosity Fraction
,”
Arch. Mater. Sci. Eng.
, Vol.
12
, No.
4
,
2012
, pp.
57
64
. https://doi.org/10.2478/v10266-012-0107-9
16.
Grosselle
,
F.
,
Timelli
,
G.
,
Bonollo
,
F.
, and
Molina
,
R.
, “
Correlation Between Microstructure and Mechanical Properties of Al-Si Die Cast Engine Blocks
,”
Metall. Sci. Technol.
, Vol.
27
, No.
2
,
2009
, pp.
2
10
.
17.
Maa
,
Z.
,
Samuela
,
A. M.
,
Samuela
,
F. H.
,
Dotyb
,
H. W.
, and
Valtierrac
,
S.
, “
A Study of Tensile Properties in Al-Si-Cu and Al-Si-Mg Alloys: Effect of β-Iron Intermetallics and Porosity
,”
Mater. Sci. Eng. A
, Vol.
490
, Nos.
1–2
,
2008
, pp.
36
51
. https://doi.org/10.1016/j.msea.2008.01.028
18.
Warmuzek
,
M.
, “
Aluminum-Silicon Casting Alloys: Atlas of Microfractographs
,”
ASM International
,
Materials Park, OH
,
2004
.
19.
Ji
,
S.
,
Yang
,
W.
,
Gao
,
F.
,
Watson
,
D.
, and
Fan
,
Z.
, “
Effect of Iron on the Microstructure and Mechanical Property of Al-Mg-Si-Mn and Al-Mg-Si Die Cast Alloys
,”
Mater. Sci. Eng. A
, Vol.
564
,
2013
, pp.
130
139
. https://doi.org/10.1016/j.msea.2012.11.095
This content is only available via PDF.
You do not currently have access to this content.