Abstract

The non-metallic inclusions in steel are one of the most important parameters of metallurgical quality. Despite the extensive progress in thermodynamic description of non-metallic inclusions formation in the liquid and solidifying steel, a complete simulation of their evolution during secondary metallurgy, casting and solidification is impossible. The processes for non-metallic inclusion formation, growth and elimination, taking into account macro- and micro-segregation evolution, are too complicated. Therefore, a statistically reliable estimation of the amount, morphology, size distribution and chemical composition of non-metallic inclusions obtained by modern experimental approaches could be an important basis for understanding steelmaking technology. Automated feature SEM/EDS analysis of the chemical composition, size, and volume fraction of more than 600 non-metallic inclusions in rail steel was conducted. Analysis of these non-metallic inclusions' database by developed software found the following clusters of inclusions: (1) oxides, Al-Ca-Si-Mn-S-O; (2) predominantly sulfides, Mn-S-Al-Ti-O; (3) oxides and sulfides, Mn-S-O; and (4) complex non-metallic inclusions, Ti-Mn-O(N). All found compositions of non-metallic inclusions were placed on the ternary diagram Mn-Al-S and they lined up from the Al corner to the MnS point on the Mn-S axis. The chemical compositions of the non-metallic inclusions evolved from Al-Ca-Si-Mn-S-O to Mn-S-Al-Ti-O and, finally, to the Mn-S-O+Ti-Mn-O(N) system. Interpretation of the chemical composition of non-metallic inclusions by thermodynamic modeling revealed the nature of each cluster with correspondence to the secondary metallurgy stage where they were formed. This information could be useful for improvement of steelmaking technology. Accumulation of cluster analysis results for non-metallic inclusions in different steels could be a basis for the development of a universal classification of non-metallic inclusions produced by modern secondary metallurgy technologies.

References

1.
Zhang
,
L.
and
Thomas
,
B. G.
, “
State of the Art in Evaluation and Control of Steel Cleanliness
,”
ISIJ int.
, Vol.
43
, No.
3
,
2003
, pp.
271
291
. https://doi.org/10.2355/isijinternational.43.271
2.
Zhang
,
L.
, “
Nucleation, Growth, Transport, and Entrapment of Inclusions During Steel Casting
,”
JOM
, Vol.
65
, No.
9
,
2013
, pp.
1138
1142
. https://doi.org/10.1007/s11837-013-0688-y
3.
Pfeiler
,
B. G.
,
Thomas
,
M.
,
Wu
,
A.
,
Ludwig
,
A.
, and
Kharicha
,
C.
, “
Solidification and Particle Entrapment During Continuous Casting of Steel
,”
Steel Res. Int.
, Vol.
77
, No.
7
,
2006
, pp.
1
10
.
4.
Matsumiya
,
T.
, “
Mathematical Analysis of Segregation and Compositional Changes of Nonmetallic Inclusions in Steel During Solidification
,”
Mater. Trans
, Vol.
33
, No.
9
,
1992
, pp.
783
794
. https://doi.org/10.2320/matertrans1989.33.783
5.
Banaszek
,
J.
,
Mcfadden
,
S.
,
Browne
,
D. J.
,
Sturz
,
L.
, and
Zimmermann
,
G.
, “
Natural Convection and Columnar-to-Equiaxed Transition Prediction in a Front-Tracking Model of Alloy Solidification
,”
Metal. Mater. Trans. A
, Vol.
38A
, No.
1476
,
2007
, pp.
1476
1484
. https://doi.org/10.1007/s11661-007-9140-7
6.
Wang
,
C.
and
Beckermann
,
C.
, “
Prediction of Columnar to Equiaxed Transition During Diffusion-Controlled Dendritic Alloy Solidification
,”
Metal. Mater. Trans. A
, Vol.
25A
, No.
5
,
1994
, pp.
1081
1093
.
7.
Volkova
,
O.
,
Heller
,
H. P.
, and
Janke
,
D.
, “
Microstructure and Cleanliness of Rapidly Solidified Steels
,”
ISIJ Int.
, Vol.
43
, No.
11
,
2003
, pp.
1724
1732
. https://doi.org/10.2355/isijinternational.43.1724
8.
Kazakov
,
A.
,
Kovalev
,
P.
,
Ryaboshuk
,
S.
,
Zhironkin
,
M.
, and
Krasnov
,
A.
, “
Control of Nonmetallic Inclusions Formation During Converter Steel Production
,”
Chernye Metally (Ferrous Metals)
, Vol.
2
, No.
4
,
2004
, pp.
37
41
.
9.
Coletti
,
B.
,
Blanpain
,
B.
,
Vantilt
,
S.
, and
Sridhar
,
S.
, “
Observation of Calcium Aluminate Inclusions at Interfaces Between Ca-Treated, Al-Killed Steels and Slags
,”
Metal. Mater. Trans. B
, Vol.
34
, No.
5
,
2003
, pp.
533
538
. https://doi.org/10.1007/s11663-003-0021-1
10.
Story
,
S.
,
Smith
,
S.
,
Fruehan
,
R.
,
Casuccio
,
G.
,
Potter
,
M.
, and
Lersch
,
T.
, “
Application of Rapid Inclusion Identification and Analysis
,”
Iron and Steel Technology Conference
, AISI Tech, Sept. 15–17,
2004
, Nashville, TN, pp.
41
49
.
11.
Kazakov
,
A.
,
Lyubochko
,
D.
,
Ryaboshuk
,
S.
, and
Chigintsev
,
L.
, “
Investigation of the Nature of Nonmetallic Inclusions in HSLA Steels Using an Automatic Particle Analyzer
,”
Chernye Metally (Ferrous Metals)
, Vol.
2
, No.
4
,
2014
, pp.
37
41
.
12.
Ren
,
Y.
,
Wang
,
Y.
,
Li
,
S.
,
Zhang
,
L.
,
Zuo
,
X.
,
Lekahn
,
S.
, and
Peaslee
,
K.
, “
Detection of Non-Metallic Inclusions in Steel Continuous Casting Billets
,”
Metal. Mater. Trans. B
, Vol.
45
, No.
1292
,
2014
, pp.
1291
1303
. https://doi.org/10.1007/s11663-014-0042-y
13.
Kazakov
,
A.
,
Zhitenev
,
A.
, and
Kovalev
,
P.
, “
Distribution Pattern of Nonmetallic Inclusions on a Cross Section of Continuous Cast Steel Billets for Rails
,”
Microsc. Microanal.
, Vol.
21
(Suppl. 3),
2015
, pp.
1751
1752
.
14.
DIN EN 13674-1
,
Railway Applications - Track - Rail - Part 1: Vignole Railway Rails 46 kg/m and Above
,
Austrian Standards Institute
,
Vienna, Austria
.
15.
Garber
,
A.
,
Arsenkin
,
A.
,
Grigorovich
,
K.
,
Shibaev
,
S.
,
Kushnarev
,
A.
, and
Petrenko
,
Y.
, “
Analysis of Various Versions of the Deoxidation of Rail Steel at OAO NTMK
,”
Russian Metal. (Metally)
, Vol.
2009
, No.
7
,
2009
, pp.
581
586
. https://doi.org/10.1134/S0036029509070064
16.
Dhua
,
S.
,
Amitava
,
R.
,
Sen
,
S.
,
Prasad
,
M.
,
Mishra
,
K.
, and
Jha
,
S.
, “
Influence of Nonmetallic Inclusion Characteristics on the Mechanical Properties of Rail Steel
,”
J. Mater. Eng. Perform.
, Vol.
9
, No.
700
,
2000
, pp.
700
709
. https://doi.org/10.1361/105994900770345584
17.
Kazakov
,
A.
,
Kovalev
,
P.
,
Ryaboshchuk
,
S.
,
Mileikovsky
,
A.
, and
Malakhov
,
N.
, “
Study of Thermo Time Nature of Non-Metallic Inclusions in Order to Improve Metallurgical Quality of High-Strength Tube Steels
,”
Chernye Metal. (Ferrous Metals)
, No.
12
,
2009
, pp.
5
11
.
18.
Jain
,
A. K.
,
Murty
,
M. N.
, and
Flynn
,
P. J.
, “
Data Clustering: A Review
,”
ACM Comput. Surveys
, Vol.
31
, No.
3
,
1999
, pp.
1
69
. https://doi.org/10.1145/333580.333017
19.
Jain
,
A. K.
and
Dubes
,
R. C.
,
Algorithms for Clustering Data
,
Prentice Hall
,
Englewood Cliffs, NJ
,
1988
, 334 pp.
20.
Gersho
,
A.
and
Gray
,
R. M.
,
Vector Quantization and Signal Compression
,
Kluwer
,
Boston
,
1992
, 760 pp.
21.
Yang
,
S.
,
Li
,
J.
,
Zhang
,
L.
,
Peaslee
,
K.
, and
Wang
,
Z.
, “
Evolution of MgO·Al2O3: Based Inclusions in Alloy Steel During the Refining Process
,”
Metal. Mining Ind.
, Vol.
2
, No.
2
,
2010
, pp.
87
92
.
22.
ASTM E1245-03,
Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
23.
ASTM E45-13,
Standard Test Methods for Determining the Inclusion Content of Steel
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
This content is only available via PDF.
You do not currently have access to this content.