Abstract

The search for suitable materials for the transport industry, to meet more stringent regulations related to crashworthiness, emissions, and fuel economy led to the development of advanced high-strength steels (AHSS). Thermal treatments, for example, using lasers as a process tool, can locally improve some characteristics of these materials like plastic deformation capability. The high energetic efficiency of a laser process, and its capability to be automated, are some of the advantages of using such a process. This study aims to investigate the effects of local heat treatment (involving changes in the solid state), by laser radiation, in the mechanical properties and microstructures of two types of advanced high-strength steels, the dual-phase DP 600, and the transformation-induced plasticity TRIP 750. A method to evaluate the interaction between laser radiation and the materials is proposed. Previous studies in this area focused, basically, in welding or cutting technology, and for the modern TRIP steel studied here, there is a scarcity of published material regarding laser–material interaction. Hardness and tensile tests revealed, for the range of process parameters studied, an improvement (up to 30 % with relation to the base material) in yield strength and ultimate strength (up to 15 %). Revealed also is a dramatic reduction in the elongation (up to 80 %) for both materials. Optical metallography analysis revealed that the resulting microstructures presented grain refinement and formation of lath martensite according to the level of laser absorption, improving up to twice the original hardness.

References

1.
Nigri
,
E.
, “
Estudo Exploratório da Soldagem por Fricção e Mistura Mecânica de um aço Trip 800 [Exploratory Study of a TRIP 800 Friction Stir Spot Welding]
,” MS thesis,
Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro
, Rio de Janeiro, Brazil,
2008
(in Portuguese).
2.
Gorni
,
A. A.
, “
Aços Avançados de Alta Resistência: Microestrutura e Propriedades Mecânicas [Advanced High Strength Steels: Microstructure and Mechanical Properties]
,”
Corte Conformação Metais
, Vol.
4
, No.
44
,
2008
, pp.
26
57
(in Portuguese).
3.
Keeler
,
S.
and
Kimchi
,
M.
, Eds., “
Advanced High-Strength Steels Application Guidelines
,”
WorldAutoSteeL
,
Middletown, OH
,
2014
.
4.
Oliver
,
S.
,
Jones
,
T. B.
, and
Fourlaris
,
G.
, “
Dual Phase Versus TRIP Steels: Microstructural Changes as a Consequence of Quasi-Static and Dynamic Tensile Testing
,”
Mater. Character.
, Vol.
58
, No.
4
,
2007
, pp.
390
400
. https://doi.org/10.1016/j.matchar.2006.07.004
5.
Zackay
,
V. F.
,
Parker
,
E. R.
,
Fahr
,
D.
, and
Busch
,
R.
, “
The Enhancement of Ductility in High-Strength Steel
,”
Trans. ASM
, Vol.
60
,
1967
, pp.
252
259
.
6.
Timokhina
,
I.
,
Hodgson
,
P.
, and
Pereloma
,
E. V.
, “
Effect of Microstructure on the Stability of Retained Austenite in Transformation-Induced-Plasticity Steels
,”
Metall. Mater. Trans. A
, Vol.
35
, No.
8
,
2004
, pp.
2331
2341
. https://doi.org/10.1007/s11661-006-0213-9
7.
Neugebauer
,
R.
,
Scheffler
,
S.
,
Poprawe
,
R.
, and
Weisheit
,
A.
, “
Local Laser Treatment of Ultra High Strength Steels to Improve Formability
,”
Prod. Eng. Res. Devel.
, Vol.
3
,
2009
, pp.
347
351
. https://doi.org/10.1007/s11740-009-0186-9
8.
Svelto
,
O.
,
Principles of Lasers
, 4th ed.,
Springer
,
New York
,
2004
.
9.
Baumann
,
M.
,
Krause
,
V.
,
Bergweiler
,
G.
,
Flaischerowitz
,
M.
, and
Banik
,
J.
, “
Local Heat Treatment of High Strength Steels With Zoom-Optics and 10 kW-Diode Laser
,”
Proc. SPIE
, Vol.
8239
,
2012
, pp.
J-1
J-9
.
10.
Asadi
,
M.
,
Frommeyer
,
G.
,
Aghajani
,
A.
,
Timokhina
,
I.
, and
Palkowski
,
H.
, “
Local Laser Heat Treatment in Dual-Phase Steels
,”
Metall. Mater. Trans. A
, Vol.
43A
, No.
4
,
2012
, pp.
1244
1258
.
11.
Grajcar
,
A.
,
Rózanski
,
M.
,
Kaminska
,
M.
, and
Grzegorczyk
,
B.
, “
Study on Non-Metallic Inclusions in Laser-Welded TRIP-Aided Nb Microalloyed Steel
,”
Arch. Metall. Mater.
, Vol.
59
, No.
3
,
2014
, pp.
1163
1169
.
12.
Ion
,
J. C.
,
Laser Processing of Engineering Materials
,
Elsevier
,
Oxford, UK
,
2005
.
13.
Ki
,
H.
and
So
,
S.
, “
Process Map for Laser Heat Treatment of Carbon Steels
,”
Optics Laser Technol.
, Vol.
44
, No.
7
,
2012
, pp.
2106
2114
. https://doi.org/10.1016/j.optlastec.2012.03.018
14.
ASTM E8/E8M-11,
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
15.
ASTM E384-11e1,
Standard Test Method for Knoop and Vickers Hardness of Materials
,
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
16.
Lepera
,
F. S.
, “
Improved Etching Technique for the Determination of Percent Martensite in High-Strength Dual-Phase Steels
,”
Metallography
, Vol.
12
, No.
3
,
1979
, pp.
263
268
. https://doi.org/10.1016/0026-0800(79)90041-7
17.
Kantoviscki
,
A. R.
, “
Caracterização Mecânica e Microestrutural de Aços de Alta Resistência e Baixa Liga TRIP 800 [Microstructural and Mechanical Characterization of a TRIP 800 Low Alloy and High Strength Steel]
,” Master's thesis,
Programa de Pós-Graduação em Engenharia Mecânica e de Materiais. Universidade Tecnológica Federal do Paraná
. Curitiba. Brazil.
2005
(in Portuguese).
18.
Cottrell
,
A. H.
and
Bilby
,
B.
, “
Dislocation Theory of Yielding and Strain Aging of Iron
,”
Proc. Phys. Soc. A
, Vol.
62
, No.
1
,
1949
, pp.
49
61
.
19.
Chiang
,
J. S.
, “
Effect of Microstructure on Retained Austenite Stability and Tensile Behaviour in an Aluminum-Alloyed TRIP Steel
,” Master's thesis,
Department of Mechanical and Materials Engineering, Queen's University
, Kingston, Ontario, Canada,
2012
.
20.
Farabi
,
N.
,
Chen
,
D. L.
,
Li
,
J.
,
Zhou
,
Y.
, and
Dong
,
S. J.
, “
Microstructure and Mechanical Properties of Laser Welded DP600 Steel Joints
,”
Mater. Sci. Eng. A
, Vol.
527
,
2010
, pp.
1215
1222
. https://doi.org/10.1016/j.msea.2009.09.051
21.
Moen
,
R. D.
,
Nolan
,
T. W.
, and
Provost
,
L.
,
Quality Improvement Through Planned Experimentation
,
McGraw Hill
,
New York
,
1999
.
This content is only available via PDF.
You do not currently have access to this content.