Abstract

A bulk functionally gradient Al–Si alloy with two varying Si contents [high (11 %) and low (4 %) hypoeutectic compositions—alloys A and B, respectively] was prepared through a novel casting technique named cast–decant–cast (CDC) process. Casting was done by pouring liquid alloy A first into a mold, allowed to solidify partially in the mold until a layer of ∼15 mm was formed against the mold walls, and decanting the remaining unsolidified alloy A by turning the mold upside down. The superheated liquid alloy B was then poured into the mold and allowed to solidify fully. Optical micrographs of the functionally gradient casting revealed no abrupt interface layer between the high- and low-Si regions, and the scanning-electron-microscopy–energy-dispersive-X-ray (SEM-EDX) analysis carried out across the cross section of the casting showed a linear silicon concentration gradient of ∼10 mm across the interface. Wear tests carried out on the individual sections of alloys A, B, and functionally gradient regions showed that the percentage cumulative weight loss was lower for the functionally gradient region (i.e., higher wear resistance) compared with the high- and low-Si regions. The SEM images taken after wear testing of the functionally gradient region showed finer and smoother wear tracks with very little random delamination of the matrix surface. This is attributed to the presence of both needle-shaped and round-shaped eutectic Si particles and their strong reinforcement in the primary aluminum-rich α matrix, which resulted in higher wear resistance of the functionally gradient region.

References

1.
Butcher
,
R. J.
,
Rousseau
,
C. E.
, and
Tippur
,
H. V.
, “
A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis
,”
Acta Mater.
, Vol.
47
, No.
1
,
1998
, pp.
259
268
. https://doi.org/10.1016/S1359-6454(98)00305-X
2.
Cannillo
,
V.
,
Manfredini
,
T.
,
Siligardi
,
C.
, and
Sola
,
A.
, “
Preparation and Experimental Characterization of Glass-Alumina Functionally Graded Materials
,”
J. Euro. Ceram. Soc.
, Vol.
26
, No.
6
,
2006
, pp.
993
1001
. https://doi.org/10.1016/j.jeurceramsoc.2004.12.017
3.
Dong
,
Y. S.
,
Lin
,
P. H.
, and
Wang
,
H. X.
, “
Electroplating Preparation of Ni-Al2O3 Graded Composite Coatings Using a Rotating Cathode
,”
Surf. Coat. Technol.
, Vol.
200
, No.
11
,
2006
, pp.
3633
3636
. https://doi.org/10.1016/j.surfcoat.2004.11.024
4.
Watanabe
,
Y.
,
Kang
,
S. H.
,
Chan
,
J. W.
,
Morris
,
J. W.
, Jr.
,
Shaw
,
T. J.
, and
Clarke
,
J.
, “
Observation of Magnetic Gradients in Stainless Steel With a High-Tc Superconducting Quantum Interference Device Microscope
,”
J. Appl. Phys.
, Vol.
89
, No.
3
,
2001
, pp.
1977
1982
. https://doi.org/10.1063/1.1334637
5.
Xiong
,
H.-P.
,
Kawasaki
,
A.
,
Kang
,
Y. S.
, and
Watanabe
,
R.
, “
Experimental Study on Heat Insulation Performance of Functionally Graded Metal/Ceramic Coatings and Their Fracture Behavior at High Surface Temperatures
,”
Surf. Coat. Technol.
, Vol.
194
, Nos.
2–3
,
2005
, pp.
203
214
.
6.
Khor
,
K. A.
and
Gu
,
Y. W.
, “
Effects of Residual Stress on the Performance of Plasma Sprayed Functionally Graded ZrO2/NiCoCrAlY Coatings
,”
Mater. Sci. Eng. A.
, Vol.
277
, Nos.
1–2
,
2000
, pp.
64
76
.
7.
Kieback
,
B.
,
Neubrand
,
A.
, and
Riedel
,
H.
, “
Processing Techniques for Functionally Graded Materials
,”
Mater. Sci. Eng. A
, Vol.
362
, Nos.
1–2
,
2003
, pp.
81
106
.
8.
Seifried
,
S.
,
Winterer
,
M.
, and
Hahn
,
H.
, “
Nanocrystalline Gradient Films Through Chemical Vapor Synthesis
,”
Scripta Mater.
, Vol.
44
, Nos.
8–9
,
2001
, pp.
2165
2168
.
9.
Su
,
B.
,
Yan
,
H. G.
,
Chen
,
G.
,
Shi
,
J. L.
,
Chen
,
J. H.
, and
Zeng
,
P. L.
, “
Study on the Preparation of the SiCp/Al–20Si–3Cu Functionally Graded Material Using Spray Deposition
,”
Mater. Sci. Eng. A
, Vol.
527
, Nos.
24–25
,
2010
, pp.
6660
6665
.
10.
Übeyli
,
M.
,
Balci
,
E.
,
Sarikan
,
B.
,
Öztaş
,
M. K.
,
Camuşcu
,
N.
,
Yildirim
,
R. O.
, and
Keleş
,
Ö.
, “
The Ballistic Performance of SiC–AA7075 Functionally Graded Composite Produced by Powder Metallurgy
,”
Mater. Design
, Vol.
56
,
2014
, pp.
31
36
. https://doi.org/10.1016/j.matdes.2013.10.092
11.
Wilson
,
J. M.
and
Shin
,
Y. C.
, “
Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel 690 Reinforced with TiC
,”
Surf. Coat. Technol.
, Vol.
207
,
2012
, pp.
517
522
. https://doi.org/10.1016/j.surfcoat.2012.07.058
12.
Zhang
,
Y.
,
Li
,
Z.
,
Li
,
C.
, and
Yu
,
Z.
, “
Temperature Gradient Field Sintering of Ti–TiB–TiB2 Functionally Graded Material
,”
Ceram. Int.
, Vol.
41
, No.
10
,
2015
, pp.
13844
13849
. https://doi.org/10.1016/j.ceramint.2015.08.070
13.
Scanlan
,
M.
,
Browne
,
D. J.
, and
Bates
,
A.
, “
New Casting Route to Novel Functionally Gradient Light Alloys
,”
Mater. Sci. Eng. A
, Vols.
413–414
,
2005
, pp.
66
71
.
14.
Mohammadi Rahvard
,
M.
,
Tamizifar
,
M.
,
Boutorabi
,
M. A.
, and
Gholami Shiri
,
S.
, “
Effect of Superheat and Solidified Layer on Achieving Good Metallic Bond Between A390/A356 Alloys Fabricated by Cast–Decant–Cast Process
,”
Trans. Nonferrous Metal. Soc. China
, Vol.
24
, No.
3
,
2014
, pp.
665
672
. https://doi.org/10.1016/S1003-6326(14)63109-5
15.
Rikhtegar
,
F.
and
Shabestari
,
S. G.
, “
Investigation on Solidification Conditions in Functionally Si-Gradient Al Alloys Using Simulation and Cooling Curve Analysis Methods
,”
J. Thermal Anal. Calorim.
, Vol.
117
, No.
2
,
2014
, pp.
721
729
. https://doi.org/10.1007/s10973-014-3767-6
16.
Midson
,
S. P.
and
Browne
,
D. J.
, “
CDC Casting
,”
Adv. Mater. Proc.
, Vol.
166
, No.
10
,
2008
, pp.
38
40
.
17.
Chandra Prakash
,
S.
,
Nagarajan
,
D.
, and
Mohamed Nazirudeen
,
S. S.
, “
Production of Functionally Gradient Al–Si Alloys Using Cast–Decant–Cast (CDC) Process
,”
63rd Annual Technical Meeting of Indian Institute of Metals
,
Kolkata, India
, Nov 14–17.
2009
.
18.
ASTM G132-96,
Standard Test Method for Pin Abrasion Testing
,
ASTM International
,
West Conshohocken, PA
,
1996
, www.astm.org
19.
Torabian
,
H.
,
Pathak
,
J. P.
, and
Tiwari
,
S. N.
, “
Wear Characteristics of Al-Si Alloys
,”
Wear
, Vol.
172
, No.
1
,
1994
, pp.
49
58
. https://doi.org/10.1016/0043-1648(94)90298-4
20.
Shivanath
,
R.
,
Sengupta
,
P. K.
, and
Eyre
,
T. S.
, “
Wear of Aluminium–Silicon Alloys
,”
British Foundrymen
, Vol.
70
,
1977
, pp.
349
356
.
21.
Kori
,
S. A.
and
Chandrashekharaiah
,
T. M.
, “
Studies on the Dry Sliding Wear Behaviour of Hypoeutectic and Eutectic Al–Si Alloys
,”
Wear
, Vol.
263
, Nos.
1–6
,
2007
, pp.
745
755
.
This content is only available via PDF.
You do not currently have access to this content.