Abstract

During the routine testing of a cryogenic engine, failure of a copper alloy (Cu-Cr-Ti-Zr) liner was noticed which led to the test abort. On close inspection of the liner, a circumferential crack with a length of 78 mm was observed on the divergent side of the thrust chamber. Roughening of the inner wall of the thrust chamber was noticed at the cracked location and extended circumference. Thinning of the copper liner wall was observed at the location of the crack indicating plastic yielding of the material at the location of failure. Fracture surface observations by scanning electron microscopy revealed features of material flow and softening at many locations indicative of exposure of fracture surface to high temperature after failure. Further, striation marks were noticed on the fracture surface indicative of fatigue. Very fine recrystallized grains were noticed in optical microscopy at the location of the crack. This is attributed to dynamic recrystallization occurring during deformation at high temperatures. Strain markings and slip bands were noticed in the interior of grains near the fracture edge. Based on extensive microstructural analysis of the failed hardware, it is concluded that the throat of thrust chamber failed due to “thermal ratcheting.”

References

1.
Butterworth
,
G. J.
, and
Forty
,
C. B. A.
, “
A Survey of the Properties of Copper Alloys for Use as Fusion Reactor Materials
,”
J. Nucl. Mater.
, Vol.
189
,
1992
, pp.
237
276
. https://doi.org/10.1016/0022-3115(92)90381-T
2.
Davis
,
J. W.
and
Kalinin
,
G. M.
, “
Material Properties and Design Requirements for Copper Alloys Used in ITER
,”
J. Nucl. Mater.
, Vol.
258
,
1998
, pp.
323
328
. https://doi.org/10.1016/S0022-3115(98)00270-0
3.
Fabritsiev
,
S. A.
,
Zinkle
,
S. J.
, and
Singh
,
B. N.
, “
Evaluation of Copper Alloys for Fusion Reactor Divertor and First Wall Components
,”
J. Nucl. Mater.
, Vols.
233–237
,
1996
, pp.
127
137
. https://doi.org/10.1016/S0022-3115(96)00091-8
4.
Kalinin
,
G. M.
, and
Matera
,
R.
, “
Comparative Analysis of Copper Alloys for the Heat Sink of Plasma Facing Components in ITER
,”
J. Nucl. Mater.
, Vols.
258–263
,
1998
, pp.
345
350
. https://doi.org/10.1016/S0022-3115(98)00271-2
5.
Arnold
,
S. M.
,
Butler
,
D. T.
, and
Pinders
,
M. J.
, “
Analysis of Factors Affecting the Performance of RLV Thrust Cell Liners
,” NASA/CR-2004-213141,
2004
.
6.
Deng
,
J.
,
Zhang
,
X.
,
Shang
,
S.
,
Liu
,
F.
,
Zhao
,
Z.
, and
Ye
,
Y.
, “
Effect of Zr Addition on the Microstructure and Properties of Cu–10Cr in situ Composites
,”
Mater. Des.
, Vol.
30
,
2009
, pp.
4444
4449
. https://doi.org/10.1016/j.matdes.2009.04.017
7.
Raabe
,
D.
,
Miyake
,
K.
, and
Takahara
,
H.
, “
Processing, Microstructure, and Properties of Ternary High-Strength Cu–Cr–Ag in situ Composites
,”
Mater. Sci. Eng.
, Vol.
A
291
,
2000
, pp.
186
197
. https://doi.org/:10.1016/S0921-5093(00)00981-3
8.
Raabe
,
D.
, and
Mattissen
,
D.
, “
Microstructure and Mechanical Properties of a Cast and Wire Drawn Ternary Cu–Ag–Nb in situ Composite
,”
Acta Mater.
, Vol.
46
,
1998
, pp.
5973
5984
. https://doi.org/10.1016/S1359-6454(98)00218-3
9.
Shukla
,
A. K.
,
Narayana Murty
,
S. V. S.
,
Suresh Kumar
,
R.
, and
Mondal
,
K.
, “
Densification Behavior and Mechanical Properties of Cu–Cr–Nb Alloy Powders
,”
Mater. Sci. Eng.
, Vol.
551
,
2012
, pp.
241
248
. https://doi.org/10.1016/j.msea.2012.04.120
10.
Shukla
,
A. K.
,
Narayana Murty
,
S. V. S.
,
Suresh Kumar
,
R.
, and
Mondal
,
K.
, “
Effect of Hot-Rolling on the Enhancement of Mechanical Properties of Low Density Cu-Cr-Nb Sintered Alloy
,”
Mater. Des.
, Vol.
43
,
2013
, pp.
125
133
. https://doi.org/10.1016/j.matdes.2012.06.041
11.
Shukla
,
A. K.
,
Narayana Murty
,
S. V. S.
,
Suresh Kumar
,
R.
, and
Mondal
,
K.
, “
Enhancement of High Temperature Ductility of Hot-Pressed Cu–Cr–Nb Alloy by Hot Rolling
,”
Mater. Sci. Eng. A
, Vol.
577
,
2013
, pp.
36
42
. https://doi.org/10.1016/j.msea.2013.04.043
12.
Shukla
,
A. K.
,
Narayana Murty
,
S. V. S.
,
Suresh Kumar
,
R.
, and
Mondal
,
K.
, “
Spark Plasma Sintering of Dispersion Hardened Cu-Cr-Nb Alloy Powders
,”
J. Alloys Compounds
, Vol.
577
,
2013
, pp.
70
78
. https://doi.org/10.1016/j.jallcom.2013.04.088
13.
Correia
,
J. B.
,
Davies
,
H. A.
, and
Sellars
,
C. M.
, “
Strengthening in Rapidly Solidified Age Hardened Cu-Cr and Cu- Cr-Zr Alloys
,”
Acta Mater.
, Vol.
45
,
1997
, pp.
177
190
. https://doi.org/10.1016/S1359-6454(96)00142-5
14.
Kanno
,
M.
, “
Effect of a Small Addition of Zirconium on Hot Ductility of a Cu-Cr Alloy
,”
Z. Metall.
, Vol.
79
,
1988
, pp.
684
688
. https://doi.org/
15.
Misra
,
R. D. K.
,
Prasad
,
V. S.
, and
Rama Rao
,
P.
, “
Dynamic Embrittlement in an Age-Hardenable Copper-Chromium Alloy
,”
Scripta Mater.
, Vol.
35
,
1996
, pp.
129
133
. https://doi.org/10.1016/1359-6462(96)00098-X
16.
Misra
,
R. D. K.
, and
Prasad
,
V. S.
, “
On the Dynamic Embrittlement of Copper-Chromium Alloys by Sulphur
,”
J. Mater. Sci.
, Vol.
35
,
2000
, pp.
3321
3325
. https://doi.org/10.1023/A:1004839825660
17.
Nathani
,
H.
, and
Misra
,
R. D. K.
, “
Characteristics of Intermediate Temperature Dynamic Embrittlement of Age Hardenable Copper-Chromium Alloys
,”
Mater. Sci. Technol.
, Vol.
20
,
2004
, pp.
546
549
. https://doi.org/10.1179/026708304225016617
18.
Krishna
,
S. C.
,
Supriya
,
N.
,
Jha
,
A. K.
,
Pant
,
B.
,
Sharma
,
S. C.
, and
George
,
K. M.
, “
Thermal Conductivity of Cu-Cr-Zr-Ti Alloy in the Temperature Range of 300–873 K
,” ISRN Metall.,
2012
, Article ID 580659,2012, https://doi.org/10.5402/2012/580659
19.
Kirner
,
E.
,
Thelemann
,
D.
, and
Wolf
,
D.
, “
Development Status of the Vulcain Thrust Chamber
,”
Acta Astronaut.
, Vol.
29
,
1993
, pp.
271
282
. https://doi.org/10.1016/0094-5765(93)90140-R
20.
Krishna
,
S. C.
,
Sudarsana Rao
,
G.
,
Jha
,
A. K.
,
Pant
,
B.
, and
George
,
K. M.
, “
Analysis of Phases and Their Role in Strengthening of Cu-Cr-Zr-Ti Alloy
,”
J. Mater. Eng. Performance
, Vol.
24
,
2015
, pp.
2341
2345
https://doi.org/10.1007/s11665-015-1516-z.
21.
Pavli
,
A. J.
,
Kazaroff
,
J. M.
, and
Jankovsky
,
R. S.
, “
Hot Fire Fatigue Testing Results for the Compliant Combustion Chamber
,” NASA Technical Paper 3223,
1992
.
22.
Morgan
,
D. B.
, and
Franklin
,
J. E.
, “
Hot Fire Test Investigation of Copper Combustion Chamber Blanching
,”
The 1989 JANNAF Propulsion Meeting
,
Eggleston
D. S.
and
Strange
K. L.
, Eds., CPIA Publication 515, Vol.
3
, pp.
417
426
.
23.
Hannum
,
N. P.
,
Kasper
,
H. J.
, and
Pavil
,
A. J.
, “
Experimental and Theoretical Investigation of Fatigue Life in Reusable Rocket Thrust Chambers
,” NASA Technical Memorandum, NASA TM X-73413, Presented at the
Twelfth Propulsion Conference
,
California
,
1976
, https://doi.org/10.2514/6.1976-685
24.
Quentmeyer
,
R. J.
, “
Experimental Fatigue Life Investigation of Cylindrical Thrust Chambers
,” NASA Technical Memorandum, NASA TM X-73665, Presented at the
Thirteenth Propulsion Conference
,
Orlando, Florida
,
1977
, https://doi.org/10.2514/6.1977-893
This content is only available via PDF.
You do not currently have access to this content.