Abstract

Austenitic stainless steel alloy 800H pipes were received in an as-pilgered condition. The pilgering process produces high levels of cold work through complex deformation processes. The pipes are subsequently solution annealed. To assess the influence of heat-treatment parameters on 800H, samples of the as-pilgered material were heat treated in the temperature range 600°C–1200°C for varying lengths of time. Using electron backscatter diffraction (EBSD), the recrystallization dynamics and grain size of all samples was measured. Additionally, the kernel average misorientation and grain orientation spread methods were employed to qualitatively analyze fine details in the strain levels in the matrix of both deformed and recrystallized grains. For 1-h anneal times, it was found that recrystallization of 800H initiates above heat-treatment temperatures of 800°C, and complete recrystallization of deformed material occurs above heat-treatment temperatures of 950°C. No significant increases in average grain size were observed until temperatures reached in excess of 1000°C. Increasing the heat-treatment time to more than 1 h had a negligible effect on the grain size for every heat-treatment temperature that was assessed. In high-temperature applications, pipes typically fail because of diffusion-based creep mechanisms. Therefore, accurate control of the grain size and microstructure during heat treatments is obligatory. This work provides a framework for controlling manufacturing processes to produce favorable microstructures in 800H for creep-based applications.

References

1.
Ren
,
W.
and
Swinderman
,
R.
, “
Status of Alloy 800H in Considerations for the Gen IV Nuclear Energy Systems
,”
J. Pressure Vessel Technol.
, Vol.
136
, No.
5
,
2014
, 054001. https://doi.org/10.1115/1.4025093
2.
Tan
,
L.
,
Rakotojaona
,
L.
,
Allen
,
T. R.
,
Nanstad
,
R. K.
, and
Busby
,
J. T.
, “
Microstructure Optimization of Austenitic Alloy 800H (Fe–21Cr–32Ni)
,”
Mater. Sci. Eng.
, Vol.
528
, No.
6
,
2011
, pp.
2755
2761
. https://doi.org/10.1016/j.msea.2010.12.052
3.
Spyrou
,
L. A.
,
Sarafoglou
,
P. I.
,
Aravas
,
N.
, and
Haidemenopoulos
,
G. N.
, “
Evaluation of Creep Damage of INCOLOY 800HT Pigtails in a Refinery Steam Reformer Unit
,”
Eng. Failure Anal.
, Vol.
45
,
2014
, pp.
456
469
. https://doi.org/10.1016/j.engfailanal.2014.07.017
4.
Almostaneer
,
H.
,
Schrijen
,
H.
,
Barai
,
K.
, and
Al-Meshari
,
A.
, “
Creep of Outlet Pigtail Tubes of Steam Reformer and Grain Size Effect on Creep of an Incoloy 800H Material
,”
Adv. Mater. Proc. Technol.
, Vol.
1
, Nos.
1–2
,
2015
, pp.
56
66
. https://doi.org/10.1080/2374068X.2015.1112142
5.
Ashby
,
F.
and
Frost
,
H. J.
,
Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon
,
Oxford, UK
,
1982
.
6.
Langdon
,
T. G.
and
Mohamed
,
F. A.
, “
Deformation Mechanism Maps Based on Grain Size
,”
Metall. Trans.
, Vol.
5
, No.
11
,
1974
, pp.
2339
2345
. https://doi.org/10.1007/BF02644014
7.
Mohamed
,
F. A.
, “
Deformation Mechanism Maps for Micro-Grained, Ultrafine-Grained, and Nano-Grained Materials
,”
Mater. Sci. Eng.
, Vol.
528
, No.
3
,
2011
, pp.
1431
1435
. https://doi.org/10.1016/j.msea.2010.10.048
8.
Alexandreanu
,
B.
,
Sencer
,
B. H.
,
Thaveeprungsriporn
,
V.
, and
Was
,
G. S.
, “
The Effect of Grain Boundary Character Distribution on the High Temperature Deformation Behavior of Ni–16Cr–9Fe Alloys
,”
Acta Mater.
, Vol.
51
, No.
13
,
2003
, pp.
3831
3848
. https://doi.org/10.1016/S1359-6454(03)00207-6
9.
Akhiani
,
H.
,
Nezakat
,
M.
,
Sanayei
,
M.
, and
Szpunar
,
J.
, “
The Effect of Thermo-Mechanical Processing on Grain Boundary Character Distribution in Incoloy 800H/HT
,”
Mater. Sci. Eng.
, Vol.
626
,
2015
, pp.
51
60
. https://doi.org/10.1016/j.msea.2014.12.046
10.
Randle
,
V.
,
The Measurement of Grain Boundary Geometry
,
Institute of Physics
,
London, UK
,
1993
.
11.
Schneibel
,
J. H.
,
Coble
,
R. L.
, and
Cannon
,
R. M.
, “
The Role of Grain Size Distributions in Diffusional Creep
,”
Acta Metall.
, Vol.
29
, No.
7
,
1981
, pp.
1285
1290
. https://doi.org/10.1016/0001-6160(81)90019-5
12.
Lodej
,
B.
,
Niang
,
K.
,
Montmitonnet
,
P.
, and
Aubin
,
J. L.
, “
Accelerated 3D FEM Computation of the Mechanical History of the Metal Deformation in Cold Pilgering of Tubes
,”
J. Mater. Proc. Technol.
, Vol.
177
, Nos.
1–3
,
2006
, pp.
188
191
. https://doi.org/10.1016/j.jmatprotec.2006.04.086
13.
Humphreys
,
F. J.
, “
A unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures. I: The Basic Model
,”
Acta Mater.
, Vol.
45
, No.
10
,
1997
, pp.
4231
4240
. https://doi.org/10.1016/S1359-6454(97)00070-0
14.
Humphreys
,
F. J.
, “
A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures. II: The Effect of Second-Phase Particles
,”
Acta Mater.
, Vol.
45
, No.
12
,
1997
, pp.
5031
5039
. https://doi.org/10.1016/S1359-6454(97)00173-0
15.
Cao
,
Y.
,
Di
,
H.
,
Zhang
,
J.
,
Zhang
,
J.
,
Ma
,
T.
, and
Misra
,
R. D. K.
, “
An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel–Chromium Alloy (800H) During Hot Deformation
,”
Mater. Sci. Eng.
, Vol.
585
,
2013
, pp.
71
85
. https://doi.org/10.1016/j.msea.2013.07.037
16.
Akhiani
,
H.
,
Nezakat
,
M.
,
Sonboli
,
A.
, and
Szpunar
,
J.
, “
The Origin of Annealing Texture in a Cold-Rolled Incoloy 800H/HT After Different Strain Paths
,”
Mater. Sci. Eng.
, Vol.
619
,
2014
, pp.
334
344
. https://doi.org/10.1016/j.msea.2014.09.093
17.
Alvi
,
M. H.
,
Cheong
,
S.
,
Weiland
,
H.
, and
Rollett
,
A. D.
, “
Microstructural Evolution During Recrystallization in Hot Rolled Aluminum Alloy 1050
,”
Proceedings of the 1st International Symposium on Metallurgical Modelling for Aluminum Alloys
, Materials Solutions Conference,
Pittsburgh, PA
, October 13–15,
2003
.
18.
Wright
,
S. I.
,
Nowell
,
M. M.
, and
Field
,
D. P.
, “
A Review of Strain Analysis Using Electron Backscatter Diffraction
,”
Microsc. Microanal.
, Vol.
17
, No.
3
,
2011
, pp.
316
329
. https://doi.org/10.1017/S1431927611000055
19.
ASTM E2627-10,
Standard Practice for Determining Average Grain Size Using Electron Backscatter Diffraction (EBSD) in Fully Recrystallized Polycrystalline Materials
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
20.
ASTM E112-12,
Standard Test Methods for Determining Average Grain Size
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
21.
Brandon
,
D.
, “
The Structure of High-Angle Grain Boundaries
,”
Acta Metall.
, Vol.
14
, No.
11
,
1966
, pp.
1479
1484
. https://doi.org/10.1016/0001-6160(66)90168-4
22.
Rohrer
,
G. S.
,
Li
,
J.
,
Lee
,
S.
,
Rollett
,
A. D.
,
Groeber
,
M.
, and
Uchic
,
M. D.
, “
Deriving Grain Boundary Character Distributions and Relative Grain Boundary Energies From Three-Dimensional EBSD Data
,”
Mater. Sci. Technol.
, Vol.
26
, No.
6
,
2010
, pp.
661
669
. https://doi.org/10.1179/026708309X12468927349370
23.
Kammers
,
A. D.
and
Daly
,
S.
, “
Digital Image Correlation Under Scanning Electron Microscopy: Methodology and Validation
,”
Exp. Mech.
, Vol.
53
, No.
9
,
2013
, pp.
1743
1761
. https://doi.org/10.1007/s11340-013-9782-x
24.
Nolze
,
G.
, “
Geometrically Caused Image Distortion Effects and Their Influence on Interpretation of EBSD Measurements
,”
Mater. Sci. Technol.
, Vol.
22
, No.
11
,
2006
, pp.
1343
1351
. https://doi.org/10.1179/174328406X130894
25.
Porter
,
D. A.
,
Easterling
,
K. E.
, and
Sherif
,
M.
,
Phase Transformations in Metals and Alloys
, 3rd ed.,
CRC
,
Boca Raton, FL
,
2009
.
26.
Michels
,
A.
,
Krill
,
C. E.
,
Ehrhardt
,
H.
,
Birringer
,
R.
, and
Wu
,
D. T.
, “
Modelling the Influence of Grain-Size-Dependent Solute Drag on the Kinetics of Grain Growth in Nanocrystalline Materials
,”
Acta Mater.
, Vol.
47
, No.
7
,
1999
, pp.
2143
2152
. https://doi.org/10.1016/S1359-6454(99)00079-8
27.
Incoloy Alloys 800H & 800HT
,”
Special Metals Corporation
,
New Hartford, NY
,
2004
.
28.
Hutchinson
,
B.
,
Jonsson
,
S.
, and
Ryde
,
L.
, “
On the Kinetics of Recrystallisation in Cold Worked Metals
,”
Scripta Metall.
, Vol.
23
, No.
5
,
1989
, pp.
671
676
. https://doi.org/10.1016/0036-9748(89)90510-3
29.
Vandermeer
,
R. A.
and
Rath
,
B. B.
, “
Modeling Recystallization Kinetics in a Deformed Iron Single Crystal
,”
Metall. Trans. A
, Vol.
20
, No.
3
,
1989
, pp.
391
401
. https://doi.org/10.1007/bf02653918
30.
Ohno
,
M.
,
Murakami
,
C.
,
Matsuura
,
K.
, and
Isobe
,
K.
, “
Effects of Ti Addition on Austenite Grain Growth During Reheating of As-Cast 0.2 Mass% Carbon Steel
,”
ISIJ Int.
, Vol.
52
, No.
10
,
2012
, pp.
1832
1840
. https://doi.org/10.2355/isijinternational.52.1832
31.
Drabble
,
D. J.
,
Bishop
,
C. M.
, and
Kral
,
M. V.
, “
A Microstructural Study of Grain Boundary Engineered Alloy 800H
,”
Metall. Mater. Trans. A
, Vol.
42
, No.
3
,
2011
, pp.
763
772
. https://doi.org/10.1007/s11661-010-0447-4
32.
Saleh
,
A. A.
,
Pereloma
,
E. V.
, and
Gazder
,
A. A.
, “
Texture Evolution of Cold Rolled and Annealed Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP Steel
,”
Mater. Sci. Eng.
, Vol.
528
, Nos.
13–14
,
2011
, pp.
4537
4549
. https://doi.org/10.1016/j.msea.2011.02.055
33.
Hall
,
E. O.
, “
The Deformation and Ageing of Mild Steel. III: Discussion of Results
,”
Proc. Phys. Soc. Sect. B
, Vol.
4
, No.
9
,
1951
, pp.
747
753
.
34.
Petch
,
N. J.
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst. London
, Vol.
173
,
1953
, pp.
25
28
.
35.
Rollett
,
A. D.
,
Wagner
,
F.
,
Allain-Bonasso
,
N.
,
Field
,
D. P.
, and
Lebensohn
,
R. A.
, “
Comparison of Gradients in Orientation and Stress Between Experiment and Simulation
,”
Mater. Sci. Forum
, Vol.
702
,
2012
, pp.
463
468
. https://doi.org/10.4028/www.scientific.net/MSF.702-703.463
This content is only available via PDF.
You do not currently have access to this content.