Abstract

Non-conventional super hard abrasive tools are made of composite materials containing super hard grains, e.g., diamond or cubic boron nitride (CBN) grains, bound by a metallic constitutive phase. These tools are usually produced by means of sintering, and are widely applied in the abrasive machining processes of modern manufacturing, especially in precision machining. The abrasive grains, which induce the material removal processes, are embedded in the metallic binder. They emerge as a consequence of self-dressing, resulting in a self-sharping effect. Therefore, the cutting surface of the tool displays an irregular topography. Quantification of surface topography scenario may supply valuable information to evaluate and understand its correlation to wear mechanisms. In this study, an experimental protocol consisting of five steps: specimen preparation, surface scanning, image assembly, image digital processing and surface quantification, was proposed and validated by characterizing two CBN honing tools used for precision machining: B151/L2/2010/50 (B151) and B91/128/x44/35 (B91) CBN honing stones. It involved the use of laser scanning microscopy and digital imaging processing for assessing significant dimensional, geometrical, and positional properties of CBN grains at the surface of super hard abrasive tools. It was shown that surface topography quantification is an effective method to evaluate and obtain the defined parameters. However, smaller grains may require images with higher resolution; thus, scanning must be refined. Finally, a critical comparative analysis of the experimental results attained for the studied tools pointed out honing stone B91 as more appropriated than B151 one for achieving a higher machining quality of the workpiece.

References

1.
Monteiro
,
S. N.
,
Skury
,
A. L. D.
,
de Azevedo
,
M. G.
, and
Bobrovnitchii
,
G. S.
, “
Cubic Boron Nitride Competing With Diamond as a Superhard Engineering Material—An Overview
,”
J. Mater. Res. Technol.
, Vol.
2
, No.
1
,
2013
, pp.
68
74
. https://doi.org/10.1016/j.jmrt.2013.03.004
2.
Wentorf
,
R. H.
, Jr.
, “
Synthesis of the Cubic Form of Boron Nitride
,”
J. Chem. Phys.
, Vol.
34
, No.
3
,
1961
, pp.
809
812
. https://doi.org/10.1063/1.1731679
3.
Saketi
,
S.
,
Sveen
,
S.
,
Gunnarsson
,
S.
,
M’Saoubi
,
R.
, and
Olsson
,
M.
, “
Wear of a High CBN Content PCBN Cutting Tool During Hard Milling of Powder Metallurgy Cold Work Tool Steels
,”
Wear
, Vols.
332–333
,
2015
, pp.
752
761
. https://doi.org/10.1016/j.wear.2015.01.073
4.
Wang
,
Y.
,
Lei
,
K.
,
Ruan
,
Y.
, and
Dong
,
W.
, “
Microstructure and Wear Resistance of CBN/Ni–Cr–Ti Composites Prepared by Spark Plasma Sintering
,”
Int. J. Refract. Met. Hard Mater.
, Vol.
54
,
2016
, pp.
98
103
. https://doi.org/10.1016/j.ijrmhm.2015.07.010
5.
McKie
,
A.
,
Winzer
,
J.
,
Sigalas
,
I.
,
Herrmann
,
M.
,
Weiler
,
L.
,
Rödel
,
J.
, and
Can
,
N.
, “
Mechanical Properties of CBN–Al Composite Materials
,”
Ceram. Int.
, Vol.
37
, No.
1
,
2011
, pp.
1
8
. https://doi.org/10.1016/j.ceramint.2010.07.034
6.
Sugihara
,
T.
and
Enomoto
,
T.
, “
High Speed Machining of Inconel 718 Focusing on Tool Surface Topography of CBN Tool
,”
Proc. Manuf.
, Vol.
1
,
2015
, pp.
675
682
. https://doi.org/10.1016/j.promfg.2015.09.010
7.
Zhi
,
G.
,
Li
,
X.
,
Bi
,
W.
,
Tang
,
J.
, and
Rong
,
Y.
, “
The Measurement and Analysis of Micro Bonding Force for Electroplated CBN Grinding Wheels Based on Response Surface Methodology
,”
Eng. Fail. Anal.
, Vol.
57
,
2015
, pp.
377
388
. https://doi.org/10.1016/j.engfailanal.2015.04.006
8.
Li
,
H. N.
and
Axinte
,
D.
, “
Textured Grinding Wheels: A Review
,”
Int. J. Mach. Tools Manuf.
, Vol.
109
,
2016
, pp.
8
35
. https://doi.org/10.1016/j.ijmachtools.2016.07.001
9.
Burkhard
,
G.
,
Rehsteiner
,
F.
, and
Schumacher
,
B.
, “
High Efficiency Abrasive Tool for Honing
,”
CIRP Ann. Manuf. Technol.
, Vol.
51
, No.
1
,
2002
, pp.
271
274
. https://doi.org/10.1016/S0007-8506(07)61515-7
10.
Kirsch
,
B.
and
Aurich
,
J. C.
, “
Influence of the Macro-Topography of Grinding Wheels on the Cooling Efficiency and the Surface Integrity
,”
Proc. CIRP
, Vol.
13
,
2014
, pp.
8
12
. https://doi.org/10.1016/j.procir.2014.04.002
11.
Aurich
,
J. C.
,
Herzenstiel
,
P.
,
Sudermann
,
H.
, and
Magg
,
T.
, “
High-Performance Dry Grinding Using a Grinding Wheel With a Defined Grain Pattern
,”
CIRP Ann. Manuf. Technol.
, Vol.
57
, No.
1
,
2008
, pp.
357
362
. https://doi.org/10.1016/j.cirp.2008.03.093
12.
Ichida
,
Y.
,
Sato
,
R.
, and
Kajino
,
H.
, “
Development of Ultrafine-Crystalline CBN Abrasive Grains for Innovative Grinding Technology
,”
Manufacturing Systems and Technologies for the New Frontier
,
Kimura
F.
and
Mitsuishi
M.
, Eds.,
Springer
,
London
,
2008
, pp.
463
466
.
13.
Dahmen
,
T.
,
Engstler
,
M.
,
Pauly
,
C.
,
Trampert
,
P.
,
de Jonge
,
N.
,
Mücklich
,
F.
, and
Slusallek
,
P.
, “
Feature Adaptive Sampling for Scanning Electron Microscopy
,”
Sci. Rep.
, Vol.
6
,
2016
, 25350. https://doi.org/10.1038/srep25350
14.
Rossi
,
P.
,
Engstler
,
M.
, and
Mücklich
,
F.
, “
Quantitative Classification and Assessment of Sr Modification in Hypoeutectic Al-Si and Al-Si-Mg Alloys
,”
Pract. Metallogr.
, Vol.
52
, No.
10
,
2015
, pp.
571
589
. https://doi.org/10.3139/147.110361
15.
Mahmoud
,
T. A.
,
Tamaki
,
J.
, and
Yan
,
J. W.
, “
Three-Dimensional Shape Modeling of Diamond Abrasive Grains Measured by a Scanning Laser Microscope
,”
Key Eng. Mater.
, Vol.
238–239
,
2003
, pp.
131
136
. https://doi.org/10.4028/www.scientific.net/KEM.238-239.131
16.
Kaplonek
,
W.
and
Nadolny
,
K.
, “
Laser Methods Based on an Analysis of Scattered Light for Automated, In-Process Inspection Of Machined Surfaces: A Review
,”
Optik (Stuttg)
, Vol.
126
, No.
20
,
2015
, pp.
2764
2770
. https://doi.org/10.1016/j.ijleo.2015.07.009
17.
Xie
,
J.
,
Wei
,
F.
,
Zheng
,
J. H.
,
Tamaki
,
J.
, and
Kubo
,
A.
, “
3D Laser Investigation on Micron-Scale Grain Protrusion Topography of Truncated Diamond Grinding Wheel for Precision Grinding Performance
,”
Int. J. Mach. Tools Manuf.
, Vol.
51
, No.
5
,
2011
, pp.
411
419
. https://doi.org/10.1016/j.ijmachtools.2011.01.010
18.
VDI 3394-1980,
Aufbau und Anwendung von Schleifkörpern mit Diamant und kubisch kristallinem Bornitrid (CBN) für die Metallbearbeitung Hrsg.vom Verein Deutscher Ingenieure Ausg [Arrangement and Use of Diamond and CBN Grinding Devices for Metal Working]
,
Association of German Engineers
,
Düsseldorf, Germany
,
1980
.
19.
Tönshoff
,
H. K.
,
Arendt
,
C.
, and
Ben Amor
,
R.
, “
Cutting of Hardened Steel
,”
CIRP Ann. Manuf. Technol.
, Vol.
49
, No.
2
,
2000
, pp.
547
566
. https://doi.org/10.1016/S0007-8506(07)63455-6
20.
FEPA 64-1992,
Shapes and Dimension for Diamond and CBN Grinding Wheels
,
Federation of European Producers of Abrasives
,
Paris, France
,
1992
.
21.
Gerhard
,
F.
,
Grundlagen und Anwendungen des Honens [Fundamentals and Applications of Honing]
,
Vulkan-Verl
,
Essen, Germany
,
1992
, p. 73.
22.
Klocke
,
F.
and
König
,
W.
,
Fertigungsverfahren 2: Schleifen [Manufacturing Processes 2: Grinding, Honing, Lapping]
,
Springer-Verlag
,
Berlin and Heidelberg, Germany
,
2005
, pp.
58
60
.
23.
a4i Micro/Quant Benutzerhandbuch [a4i Micro/Quant User Guide]
,
Aquinto AG
,
Berlin, Germany
,
2003
, p. 48.
24.
Malvern Instruments Ltd
,
A Basic Guide to Particle Characterization, White Paper
,
Malvern Instruments Ltd
,
Malvern, UK
,
2012
.
25.
Olson
,
E.
, “
Particle Shape Factors and Their Use in Image Analysis—Part 1: Theory
,”
J. GXP Compliance
, Vol.
15
, No.
3
,
2011
, pp.
85
96
.
26.
Feret
,
L. R.
,
La Grosseur des Grains des Matieres Pulverulentes [Particle Size of Pulverulent Materials]
,
Assoc. Internat. pour l’Essai des Mat.
Zurich
, Vol.
2
,
1931
, P. 428.
27.
Walton
,
W. H.
, “
Feret’s Statistical Diameter as a Measure of Particle Size
,”
Nature
, Vol.
162
,
1948
, pp.
329
330
. https://doi.org/10.1038/162329b0, 10.1038/162329a0
28.
Underwood
,
E. E.
, “
Stereology, or the Quantitative Evaluation of Microstructures
,”
J. Microsc.
, Vol.
89
, No.
2
,
1969
, pp.
161
180
. https://doi.org/10.1111/j.1365-2818.1969.tb00663.x
29.
Danielson
,
P. E.
, “
A New Shape Factor
,”
Comput. Graph. Image Process
, Vol.
7
, No.
2
,
1978
, pp.
292
299
. https://doi.org/10.1016/0146-664X(78)90119-3
30.
Merkus
,
H. G.
,
Particle Size Measurements: Fundamentals, Practice, Quality
,
Springer
,
New York
,
2009
, pp.
28
34
.
31.
Akbaripanah
,
F.
,
Fereshteh-Saniee
,
F.
,
Mahmudi
,
R.
, and
Kim
,
H. K.
, “
Microstructural Homogeneity, Texture, Tensile and Shear Behavior of AM60 Magnesium Alloy Produced by Extrusion and Equal Channel Angular Pressing
,”
Mater. Des.
, Vol.
43
,
2013
, pp.
31
39
. https://doi.org/10.1016/j.matdes.2012.06.051
32.
Ceriani
,
L.
and
Verme
,
P.
, “
The Origins of the Gini Index: Extracts From Variabilità e Mutabilità by Corrado Gini
,”
J. Econ. Inequal.
, Vol.
10
, No.
3
,
2012
, pp.
421
443
. https://doi.org/10.1007/s10888-011-9188-x
33.
Rossi
,
P.
,
Engstler
,
M.
, and
Mücklich
,
F.
, “
Homogeneity Quantification Method and its Application to Microstructure Assessment
,”
Pract. Metallogr.
, Vol.
51
, No.
3
,
2014
, pp.
180
199
. https://doi.org/10.3139/147.110287
34.
Gastwirth
,
J. L.
, “
The Estimation of the Lorenz Curve and Gini Index
,”
Rev. Econ. Stat.
, Vol.
54
, No.
3
,
1972
, pp.
306
316
. https://doi.org/10.2307/1937992
35.
Novak
,
M.
and
Deepak
,
S.
, “
Comparing 3D Optical Microscopy Techniques for Metrology Applications
,” Bruker Nano Surfaces Div Application Notes,
2013
, https://www.bruker.com/products/surface-and-dimensional-analysis/3d-optical-microscopes/contourgt-x/learn-more.html (Last accessed 7 September 2015).
This content is only available via PDF.
You do not currently have access to this content.