Abstract

One of the important objectives of studies on the hot deformation of materials is the development of constitutive equations that represent the flow stress of the material as a function of strain, strain rate, and temperature useful for the structural designers in finite element analysis. While the constitutive analysis is fairly simple for pure metals and dilute alloys at high temperatures and low strain rates (low flow stresses), it can get complicated at high stresses and with the presence of a second phase, such as those in metal matrix composites. In the present work, the hot deformation behavior of aluminum matrix composites was studied by developing constitutive equations using Johnson–Cook (JC), modified JC (m-JC), Arrhenius, and modified Zerilli and Armstrong (m-ZA) models, and the prediction capability of these models was compared based on average absolute error (Δ). Further, the effect of reinforcement on activation energy of these composites was studied by varying parameters, viz., nature of reinforcement, volume fraction, and size. Out of the four constitutive models studied, the average absolute error is lowest for m-JC and Arrhenius models, and the flow stress values predicted by these two models compare well with the experimental data. Material constants of all the constitutive models for silicon carbide particulate (SiCp)-reinforced AA2124 composites with various volume fractions (5–30 %) were evaluated and provided as a database for the numerical simulations of hot deformation of these composites. To validate the constitutive equations, power dissipation maps have been developed for AA2124-15 vol % SiCp-reinforced composites, and it was found that the predicted flow stress data obtained from m-JC and Arrhenius equations could successfully reproduce the efficiency of power dissipation, indicating their better predictability of flow stress over JC and m-ZA models. Constitutive equations are quantified for 28 aluminum alloys and their composites, and physical interpretation of the constants of Arrhenius equation was provided.

References

1.
Torralba
J. M.
,
da Costa
C. E.
, and
Velasco
F.
, “
P/M Aluminum Matrix Composites: An Overview
,”
Journal of Materials Processing Technology
133
, nos. 
1–2
(February
2003
):
203
206
. https://doi.org/10.1016/S0924-0136(02)00234-0
2.
Chawla
N.
,
Deng
X.
, and
Schnell
D. R. M.
, “
Thermal Expansion Anisotropy in Extruded SiC Particle Reinforced 2080 Aluminum Alloy Matrix Composites
,”
Materials Science and Engineering: A
426
, nos. 
1–2
(June
2006
):
314
322
. https://doi.org/10.1016/j.msea.2006.04.054
3.
Patel
A.
,
Das
S.
, and
Prasad
B. K.
, “
Hot Deformation Behaviour of AA2014–10 wt% SiC Composite
,”
Transactions of the Indian Institute of Metals
67
, no. 
4
(August
2014
):
521
530
. https://doi.org/10.1007/s12666-013-0375-2
4.
Guo
Z. X.
, ed.,
The Deformation and Processing of Structural Materials
(
Boca Raton, FL
:
CRC Press
,
2005
).
5.
Suresh
S.
,
Mortensen
A.
and
Needleman
A.
, eds.,
Fundamentals of Metal-Matrix Composites
(
Stoneham, MA
:
Butterworth-Heinemann
,
1993
).
6.
McQueen
H. J.
,
Spigarelli
S.
,
Kassner
M. E.
, and
Evangelista
E.
,
Hot Deformation and Processing of Aluminum Alloys
(
Boca Raton, FL
:
CRC Press
,
2011
).
7.
Srivastava
V. C.
,
Jindal
V.
,
Uhlenwinkel
V.
, and
Bauckhage
K.
, “
Hot-Deformation Behaviour of Spray-Formed 2014 Al + SiCP Metal Matrix Composites
,”
Materials Science and Engineering: A
477
, nos. 
1–2
(March
2008
):
86
95
. https://doi.org/10.1016/j.msea.2007.06.086
8.
Xia
X.
,
Sakaris
P.
, and
McQueen
H. J.
, “
Hot Deformation, Dynamic Recovery, and Recrystallisation Behaviour of Aluminium 6061–SiCp Composite
,”
Materials Science and Technology
10
, no. 
6
(
1994
):
487
496
. https://doi.org/10.1179/mst.1994.10.6.487
9.
Prasad
Y. V. R. K.
,
Rao
K. P.
, and
Sasidhara
S.
,
Hot Working Guide: A Compendium of Processing Maps
(
Materials Park, OH
:
ASM International
,
2015
).
10.
Shin
H.
and
Kim
J.-B.
, “
A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes
,”
Journal of Engineering Materials and Technology
132
, no. 
2
(February
2010
): 021009. https://doi.org/10.1115/1.4000225
11.
Narayana Murty
S. V. S.
and
Nageswara
B.
Rao, “
Instability Map for Hot Working of 6061 Al-10 vol% Al2O3 Metal Matrix Composite
,”
Journal of Physics D: Applied Physics
31
, no. 
22
(November
1998
):
3306
3311
. https://doi.org/10.1088/0022-3727/31/22/020
12.
Narayana Murty
S. V. S.
,
Nageswara Rao
B.
, and
Kashyap
B. P.
, “
On the Hot Working Characteristics of 2124 Al-SiCp Metal Matrix Composites
,”
Advanced Composite Materials
11
, no. 
2
(
2002
):
105
120
. https://doi.org/10.1163/156855102760410315
13.
Narayana Murty
S. V. S.
,
Nageswara Rao
B.
, and
Kashyap
B. P.
, “
On the Hot Working Characteristics of 6061Al–SiC and 6061–Al2O3 Particulate Reinforced Metal Matrix Composites
,”
Composites Science and Technology
63
, no. 
1
(January
2003
):
119
135
. https://doi.org/10.1016/S0266-3538(02)00197-5
14.
Narayana Murty
S. V. S.
,
Nageswara Rao
B.
, and
Kashyap
B. P.
, “
On the Hot Working Characteristics of 2014 Al–20 vol% Al2O3 Metal Matrix Composite
,”
Journal of Materials Processing Technology
166
, no. 
2
(August
2005
):
279
285
. https://doi.org/10.1016/j.jmatprotec.2004.09.088
15.
Zhang
P.
,
Li
F.
, and
Wan
Q.
, “
Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites
,”
Journal of Materials Engineering and Performance
19
, no. 
9
(December
2010
):
1290
1297
. https://doi.org/10.1007/s11665-010-9611-7
16.
Samantaray
D.
,
Mandal
S.
, and
Bhaduri
A. K.
, “
A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr–1Mo Steel
,”
Computational Materials Science
47
, no. 
2
(December
2009
):
568
576
. https://doi.org/10.1016/j.commatsci.2009.09.025
17.
Lin
Y. C.
and
Chen
X.-M.
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Materials & Design
32
, no. 
4
(April
2011
):
1733
1759
. https://doi.org/10.1016/j.matdes.2010.11.048
18.
Johnson
G. R.
and
Cook
W. H.
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,” in
Seventh International Symposium on Ballistics
(
The Hague, the Netherlands
,
1983
),
541
547
.
19.
Lin
Y. C.
,
Chen
X.-M.
, and
Liu
G.
, “
A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel
,”
Materials Science and Engineering: A
527
, no. 
26
(October
2010
):
6980
6986
. https://doi.org/10.1016/j.msea.2010.07.061
20.
Zerilli
F. J.
and
Armstrong
R. W.
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
Journal of Applied Physics
61
, no. 
5
(March
1987
):
1816
1825
. https://doi.org/10.1063/1.338024
21.
Zener
C.
and
Hollomon
J. H.
, “
Effect of Strain Rate upon Plastic Flow of Steel
,”
Journal of Applied Physics
15
, no. 
1
(January
1944
):
22
32
. https://doi.org/10.1063/1.1707363
22.
Shi
H.
,
McLaren
A. J.
,
Sellars
C. M.
,
Shahani
R.
, and
Bolingbroke
R.
, “
Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys
,”
Materials Science and Technology
13
, no. 
3
(
1997
):
210
216
. https://doi.org/10.1179/mst.1997.13.3.210
23.
McQueen
H. J.
and
Ryan
N. D.
, “
Constitutive Analysis in Hot Working
,”
Materials Science and Engineering: A
322
, nos. 
1–2
(January
2002
):
43
63
. https://doi.org/10.1016/S0921-5093(01)01117-0
24.
Chakravarthi
K. V. A.
,
Koundinya
N. T. B. N.
,
Narayana Murty
S. V. S.
, and
Nageswara Rao
B.
, “
Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel during Hot Deformation
,”
Journal of Materials Engineering and Performance
26
, no. 
3
(March
2017
):
1174
1185
. https://doi.org/10.1007/s11665-017-2539-4
25.
Momeni
A.
, “
The Physical Interpretation of the Activation Energy for Hot Deformation of Ni and Ni-30Cu Alloys
,”
Journal of Materials Research
31
, no. 
8
(April
2016
):
1077
1084
. https://doi.org/10.1557/jmr.2016.81
26.
Kai
X.
,
Zhao
Y.
,
Wang
A.
,
Wang
C.
, and
Mao
Z.
, “
Hot Deformation Behavior of In Situ Nano ZrB2 Reinforced 2024Al Matrix Composite
,”
Composites Science and Technology
116
(September
2015
):
1
8
. https://doi.org/10.1016/j.compscitech.2015.05.006
27.
Hao
S.-M.
,
Xie
J.-P.
,
Wang
A.-Q.
,
Wang
W.-Y.
,
Li
J.-W.
, and
Sun
H.-L.
, “
Hot Deformation Behaviors of 35%SiCp/2024Al Metal Matrix Composites
,”
Transactions of Nonferrous Metals Society of China
24
, no. 
8
(August
2014
):
2468
2474
. https://doi.org/10.1016/S1003-6326(14)63372-0
28.
Ou
L.
,
Zheng
Z.
,
Nie
Y.
, and
Jian
H.
, “
Hot Deformation Behavior of 2060 Alloy
,”
Journal of Alloys and Compounds
648
(November
2015
):
681
689
. https://doi.org/10.1016/j.jallcom.2015.07.027
29.
Zhou
L.
,
Huang
Z. Y.
,
Wang
C. Z.
,
Zhang
X. X.
,
Xiao
B. L.
, and
Ma
Z. Y.
, “
Constitutive Flow Behaviour and Finite Element Simulation of Hot Rolling of SiCp/2009Al Composite
,”
Mechanics of Materials
93
(February
2016
):
32
42
. https://doi.org/10.1016/j.mechmat.2015.10.010
30.
Spigarelli
S.
,
Evangelista
E.
, and
McQueen
H. J.
, “
Study of Hot Workability of a Heat Treated AA6082 Aluminum Alloy
,”
Scripta Materialia
49
, no. 
2
(July
2003
):
179
183
. https://doi.org/10.1016/S1359-6462(03)00206-9
31.
Li
X.
,
Liu
C.
,
Luo
K.
,
Ma
M.
, and
Liu
R.
, “
Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering
,”
Journal of Materials Science and Technology
32
, no. 
4
(April
2016
):
291
297
. https://doi.org/10.1016/j.jmst.2015.12.006
32.
Herba
E. M.
and
McQueen
H. J.
, “
Influence of Particulate Reinforcements on 6061 Materials in Extrusion Modeling
,”
Materials Science and Engineering: A
372
, nos. 
1–2
(May
2004
):
1
14
. https://doi.org/10.1016/j.msea.2003.08.006
33.
Spigarelli
S.
,
Evangelista
E.
,
Cerri
E.
, and
Langdon
T. G.
, “
Constitutive Equations for Hot Deformation of an Al-6061/20% Al2O3 Composite
,”
Materials Science and Engineering: A
319–321
(December
2001
):
721
725
. https://doi.org/10.1016/S0921-5093(01)01071-1
34.
Sheppard
T.
and
Jackson
A.
, “
Constitutive Equations for Use in Prediction of Flow Stress during Extrusion of Aluminium Alloys
,”
Materials Science and Technology
13
, no. 
3
(
1997
):
203
209
. https://doi.org/10.1179/mst.1997.13.3.203
35.
Zhang
J.
,
Di
H.
,
Wang
X.
,
Cao
Y.
,
Zhang
J.
, and
Ma
T.
, “
Constitutive Analysis of the Hot Deformation Behavior of Fe–23Mn–2Al–0.2C Twinning Induced Plasticity Steel in Consideration of Strain
,”
Materials & Design
44
(February
2013
):
354
364
. https://doi.org/10.1016/j.matdes.2012.08.004
This content is only available via PDF.
You do not currently have access to this content.