Abstract

Understanding fatigue damage progression and estimating remaining life is a major challenge in the asset management of safety critical components. A small scoop of material is extracted from the critical locations of a component, and the fatigue property is estimated from the small volume of material. Cyclic automated ball indentation (ABI), cyclic small punch test, and cyclic bulge test are the three known small volume fatigue test methods; among them, cyclic ABI has the potential to be used in situ apart from laboratory testing. During cyclic ABI testing, compression-compression fatigue loading is applied on the material using a tungsten carbide spherical indenter of 1/16-in. diameter, and from the load-displacement response, the failure cycle is identified. To understand fatigue damage progression in a systematic manner, controlled constant amplitude fatigue experiments were carried out on hourglass-shaped SS304L stainless steel specimens with periodic interruption to conduct static ABI and cyclic ABI experiments. Our earlier study suggested a good correlation between failure cycles identified from displacement response with the acoustic emission data as well as hysteresis energy. Hence, in the present study, the load-indenter displacement data are used as a reference to characterize the damage progression. Failure life data obtained from the cyclic ball indentation tests show progressive degradation because of global fatigue damage progression. Exploratory experiments were conducted to identify the effect of test control mode (viz., global load control and actuator displacement control on failure life during cyclic ABI testing); it is found that both the control modes are capable of identifying failure life during cyclic indentation testing. Static and cyclic ABI tests on the weld regions of stainless steel SS304L(N) suggests distinct material response at the base metal and weld region. Thus, cyclic ABI testing can be deployed in situ during plant maintenance to record fatigue response of localized spots.

References

1.
Venkatraman
B.
,
Mukhophadyay
C. K.
, and
Raj
B.
, “
Prediction of Tensile Failure of 316 Stainless Steel Using Infrared Thermography
,”
Experimental Techniques
28
, no. 
2
(March
2004
):
35
38
, https://doi.org/10.1111/j.1747-1567.2004.tb00157.x
2.
Jaya Rao
V. V. S.
,
Kannan
E.
,
Prakash
R. V.
, and
Balasubramaniam
K.
, “
Fatigue Damage Characterization Using Surface Acoustic Wave Nonlinearity in Aluminum Alloy AA7175-T7351
,”
Journal of Applied Physics
104
, no. 
12
(December
2008
): 123508, https://doi.org/10.1063/1.2956396
3.
Electric Power Research Institute
Fossil Plant High-Energy Piping Damage: Theory and Practice, Volume 1: Piping Fundamentals, Report 1012201
(
Palo Alto, CA
:
Electric Power Research Institute
,
2007
).
4.
Kumar
K.
,
Pooleery
A.
,
Madhusoodanan
K.
,
Singh
R. N.
,
Chakravartty
J. K.
,
Dutta
B. K.
, and
Sinha
R. K.
, “
Use of Miniature Tensile Specimen for Measurement of Mechanical Properties
,”
Procedia Engineering
86
(
2014
):
899
909
, https://doi.org/10.1016/j.proeng.2014.11.112
5.
Haggag
F. M.
, “
Effect of Irradiation Temperature on Embrittlement of Nuclear Pressure Vessel Steels
,” in
Effects of Radiation on Materials: 16th International Symposium
, ed.
Kumar
A. S.
,
Gelles
D. S.
,
Nanstad
R. K.
, and
Little
E. A.
(West Conshohocken, PA:
ASTM International
,
1993
),
172
185
.
6.
Dzugan
J.
,
Konopik
P.
, and
Rund
M.
, “
Fracture Toughness Determination with the Use of Miniaturized Specimens
,” in
Contact and Fracture Mechanics
(
London, UK
:
IntechOpen
,
2018
),
143
168
.
7.
Standard Test Method for Tension Testing of Metallic Materials
, ASTM E8/8M-24 (West Conshohocken, PA:
ASTM International
, approved January 1,
2024
).
8.
Standard Test Method for Impact Testing of Miniaturized Charpy V-Notch Specimens
, ASTM E2248-18 (West Conshohocken, PA:
ASTM International
, approved June 1,
2018
).
9.
Standard Test Method for Measurement of Fracture Toughness
, ASTM E1820-23 (West Conshohocken, PA:
ASTM International
, approved February 1,
2023
).
10.
Linga Murty
K.
and
Mathew
M. D.
, “
Nondestructive Monitoring of Structural Materials Using Automated Ball Indentation (ABI) Technique
,”
Nuclear Engineering and Design
228
, nos. 
1–3
(March
2004
):
81
96
, https://doi.org/10.1016/j.nucengdes.2003.06.006
11.
Manahan
M. P.
,
Argon
A. S.
, and
Harling
O. K.
, “
The Development of a Miniaturized Disk Bend Test for the Determination of Post-irradiation Mechanical Properties
,”
Journal of Nuclear Materials
104
(
1981
):
1545
1550
, https://doi.org/10.1016/0022-3115(82)90820-0
12.
Haggag
F. M.
,
Byun
T.-S.
,
Hong
J. H.
,
Miraglia
P. Q.
, and
Linga Murty
K.
, “
Indentation-Energy-To-Fracture (IEF) Parameter for Characterization of DBTT in Carbon Steels Using Nondestructive Automated Ball Indentation (ABI) Technique
,”
Scripta Materialia
38
, no. 
4
(January
1998
):
645
651
, https://doi.org/10.1016/S1359-6462(98)00519-3
13.
Mathew
M. D.
, “
Characterization of Mechanical Properties Using Ball Indentation, Small Punch Creep and Impression Creep Methods
,” in
Mechanical and Creep Behavior of Advanced Materials
, ed.
Charit
I.
,
Zhu
Y. T.
,
Maloy
S. A.
, and
Liaw
P. K.
(
Cham, Switzerland
:
Springer
,
2017
),
79
94
, https://doi.org/10.1007/978-3-319-51097-2_7
14.
Haggag
F. M.
, “
In Situ Measurement of Mechanical Properties Using Novel Automated Ball Indentation System
,” in
Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension
, ed.
Corwin
W. R.
,
Haggag
F. M.
, and
Server
W. L.
(West Conshohocken, PA:
ASTM International
,
1993
),
27
44
, https://doi.org/10.1520/STP12719S
15.
Prakash
R. V.
,
Bhokardole
P.
, and
Shin
C. S.
, “
Investigation of Material Fatigue Behavior through Cyclic Ball Indentation Testing
,”
Journal of ASTM International
5
, no. 
9
(October
2008
), https://doi.org/10.1520/JAI101042
16.
Nagy
P. M.
,
Juhasz
A.
,
Voros
Gy.
,
Toth
A.
, and
Ujvari
T.
, “
Internal Friction Measurement on Polymers by Low-Frequency Cyclic Vickers Microindentation Test
,”
Materials Science Engineering: A
387–389
(
2004
):
525
530
, https://doi.org/10.1016/j.msea.2004.03.092
17.
Olurin
O. B.
,
Fleck
N. A.
, and
Ashby
M. F.
, “
Indentation Resistance of an Aluminum Foam
,”
Scripta Materialia
43
, no. 
11
(November
2000
):
983
989
, https://doi.org/10.1016/S1359-6462(00)00519-4
18.
Bangia
A.
and
Prakash
R. V.
, “
Energy Parameter Correlation of Failure Life Data between Cyclic Ball Indentation and Low Cycle Fatigue
,”
Open Journal of Metal
2
, no. 
1
(January
2012
):
31
36
, https://doi.org/10.4236/ojmetal.2012.21005
19.
Villarraga
M. L.
,
Kurtz
S. M.
,
Herr
M. P.
, and
Edidin
A. A.
, “
Multiaxial Fatigue Behavior of Conventional and Highly Crosslinked UHMWPE during Cyclic Small Punch Testing
,”
Journal of Biomedical Materials Research Part A
66A
, no. 
2
(August
2003
):
298
309
, https://doi.org/10.1002/jbm.a.10500
20.
Prakash
R. V.
,
Dhaka
P.
,
Prasad Reddy
G. V.
, and
Sandhya
R.
, “
Understanding the Fatigue Response of Small Volume Specimens through Novel Fatigue Test Methods—Experimental Results and Numerical Simulation
,”
Theoretical and Applied Fracture Mechanics
103
(
2019
): 102304, https://doi.org/10.1016/j.tafmec.2019.102304
21.
Prakash
R. V.
,
Thomas
M.
,
Prakash
A. R.
, and
Mukhopadhyay
C. K.
, “
Online Acoustic Emission Monitoring of Cyclic Ball Indentation Testing—Correlation with Hysteresis Area Response
,”
Procedia Structural Integrity
28
(
2020
):
1629
1636
, https://doi.org/10.1016/j.prostr.2020.10.134
22.
Standard Test Method for Strain-Controlled Fatigue Testing
, ASTM E606/E606M-21 (West Conshohocken, PA:
ASTM International
, approved June 1,
2021
).
23.
Prakash
R. V.
,
Madhavan
K.
,
Prakash
A. R.
, and
Dhaka
P.
, “
Localized Fatigue Response Evaluation of Weld Regions through Cyclic Indentation Studies
,” in
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 12: Materials: Genetics to Structures
(
New York, NY
:
American Society of Mechanical Engineers
,
2018
), V012T11A012, https://doi.org/10.1115/IMECE2018-86420
24.
Prakash
R. V.
and
Arunkumar
S.
, “
Evaluation of Damage in Materials Due to Fatigue Cycling through Static and Cyclic Small Punch Testing
,” in
Small Specimen Test Techniques, Volume 6
, ed.
Sokolov
M.
and
Lucon
E.
(West Conshohocken, PA:
ASTM International
,
2015
),
168
186
, https://doi.org/10.1520/STP157620140011
25.
Lancaster
R. J.
,
Jeffs
S. P.
,
Illsley
H. W.
,
Argyrakis
C.
,
Hurst
R. C.
, and
Baxter
G. J.
, “
Development of a Novel Methodology to Study Fatigue Properties Using the Small Punch Test
,”
Materials Science and Engineering: A
748
(
2019
):
21
29
, https://doi.org/10.1016/j.msea.2019.01.074
26.
Komazaki
S.
,
Jojima
R.
,
Muraoka
N.
,
Nogami
S.
,
Kamaya
M.
,
Hisaka
C.
,
Fujiwara
M.
, and
Nitta
A.
, “
Development of Small Bulge Fatigue Testing Technique Using Small Disk-Type Specimen
,”
Fatigue and Fracture of Engineering Materials and Structures
43
, no. 
3
(March
2020
):
444
456
, https://doi.org/10.1111/ffe.13130
27.
Vasudevan
M.
,
Bhaduri
A. K.
, and
Raj
B.
,
A penetration enhancing flux formulation for tungsten inert gas (TIG) welding of austenitic stainless steel and its application.
. US Patent 8097826B2, filed November 8, 2006, and issued January 17,
2012
.
28.
Colin
J.
,
Fatemi
A.
, and
Taheri
S.
, “
Cyclic Hardening and Fatigue Behavior of Stainless Steel 304L
,”
Journal of Materials Science
46
(
2010
):
145
154
, https://doi.org/10.1007/s10853-010-4881-x
29.
Haggag
F. M.
,
Wang
J.-A.
,
Sokolov
M. A.
, and
Linga Murty
K.
, “
Use of Portable/In-Situ Stress-Strain Microprobe System to Measure Stress-Strain Behavior and Damage in Metallic Materials and Structures
,” in
Nontraditional Methods of Sensing Stress, Strain, and Damage in Materials and Structures
, ed.
Lucas
G. F.
and
Stubbs
D. A.
(West Conshohocken, PA:
ASTM International
,
1997
),
85
98
, https://doi.org/10.1520/STP11894S
This content is only available via PDF.
You do not currently have access to this content.