Methods used for life prediction of titanium matrix composites under isothermal and thermomechanical (TMF) fatigue are reviewed. Models containing a single parameter are shown to have applicability only under limited conditions. Two models, a dominant damage and a life fraction model, demonstrate predictive capabilities over a broad range of loads, frequencies, temperatures, and TMF parameters. Relationships between the underlying fatigue mechanisms and the individual terms in the models are illustrated.
Issue Section:
Technical Papers
Topics:
Composite materials,
Fatigue life,
Titanium,
Fatigue,
Damage,
Stress,
Temperature,
Thermomechanics
1.
Russ
S. M.
Nicholas
T.
Hanson
D. G.
Mall
S.
Isothermal and Thermomechanical Fatigue of Cross-Ply SCS-6/β21-S
,” Science and Engineering of Composite Materials
, Vol. 3
, 1994
, pp. 177
–189
.2.
Gabb
T. P.
Gayda
J.
Bartolotta
P. A.
Castelli
M. G.
A Review of Thermomechanical Fatigue Damage Mechanisms in Titanium and Titanium Aluminide Matrix Composites
,” Int. J. Fatigue
, Vol. 15
, 1993
, pp. 413
–422
.3.
Jeng
S. M.
Yang
J.-M.
Aksoy
S.
Damage Mechanisms of SCS-6/Ti-6Al-4V Composites Under Thermal-Mechanical Fatigue
,” Mat. Sci. Engr.
, Vol. A156
, 1992
, pp. 117
–124
.4.
Johnson, W. S., Lubowinski, S. J., and Highsmith, A. L., “Mechanical Characterization of Unnotched SCS6/Ti-15-3 Metal Matrix Composites at Room Temperature,” Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites, ASTM STP 1080, J. M. Kennedy, H. H. Moeller, and W. S. Johnson, eds., American Society for Testing and Materials, Philadelphia, 1990, pp. 193–218.
5.
Pollock, W. D., and Johnson, W. S., “Characterization of Unnotched SCS-6/Ti-15-3 Metal Matrix Composites at 650°C,” Composite Materials: Testing and Design (Tenth Volume), ASTM STP 1120, Glenn C. Grimes, ed., American Society for Testing and Materials, Philadelphia, 1992, pp. 175–191.
6.
Mirdamadi, M., Johnson, W. S., Bahei-El-Din, Y. A., and Castelli, M. G., “Analysis of Thermomechanical Fatigue of Unidirectional Titanium Metal Matrix Composites,” Composite Materials: Fatigue and Fracture, Fourth Volume, ASTM STP 1156, W. W. Stinchcomb and N. E. Ashbaugh, Eds., American Society for Testing and Materials, Philadelphia, 1993, pp. 591–607.
7.
Mirdamadi, M., and Johnson, W. S., “Modeling and Life Predictions for TMC’s Subjected to Mission Profiles,” Life Prediction Methodology for Titanium Matrix Composites, ASTM STP 1253, W. S. Johnson, J. M. Larsen and B. N. Cox, eds., American Society for Testing and Materials, Philadelphia, 1995.
8.
Ward, G. T., Herrmann, D. J., and Hillberry, B. M., “Stress-Life Behavior of Unnotched SCS-6/Ti-β21S Cross-Ply Metal Matrix Composites at Room Temperature,” FATIGUE 93, Vol. II, J.-P. Bailon and J. I. Dickson, Eds., EMAS, 1993, pp. 1067–1072.
9.
Ward
G. T.
Herrmann
D. J.
Hillberry
B. M.
Fatigue-Life Behavior and Matrix Fatigue Crack Spacing in Unnotched SCS-6/Timetal®21S Metal Matrix Composites
,” Journal of Composites Technology and Research
, JCTRER, Vol. 17
, No. 3
, 1995
, pp. 205
–211
.10.
Majumdar, B. S., and Newaz, G. M., “Thermomechanical Fatigue of a Quasi-Isotropic Metal Matrix Composite,” Composite Materials: Fatigue and Fracture (Third Volume), ASTM STP 1110, T. K. O’Brien, ed., American Society for Testing and Materials, Philadelphia, 1991, pp. 732–752.
11.
Halford, G. R., Lerch, B. A., Saltsman, J. F., and Arya, V. K., “Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs),” Proceedings of the Symposium on Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, American Society for Testing and Materials, Philadelphia, 1993, pp. 176–194.
12.
Saltsman, J. F., and Halford, G. R., “An Update of the Total-Strain Version of Strainrange Partitioning,” Low Cycle Fatigue, ASTM STP 942, H. D. Solomon, G. R. Halford, L. R. Kaisand, and B. N. Leis, Eds., American Society for Testing and Materials, Philadelphia, 1988, pp. 329–341.
13.
Halford, G. R., “MMC Ring Fatigue and Fracture Life Prediction: An Engineering Model,” Reliability, Stress Analysis, and Failure Prevention, DE-Vol. 55, American Society of Mechanical Engineers, New York, 1993, pp. 307–315.
14.
Bartolotta, P. A., “Fatigue Life Prediction of an Intermetallic Matrix Composite at Elevated Temperatures,” Failure Mechanisms in High Temperature Composite Materials, AD-Vol. 22/AMD-Vol. 122, G. K. Haritos, G. Newaz and S. Mall, Eds., American Society of Mechanical Engineers, New York, 1991, pp. 45–54.
15.
Manson
S. S.
Fatigue: A Complex Subject-Some Simple Approximations
,” Exp. Mech.
, Vol. 5
, 1965
, pp. 193
–226
.16.
Radhakrishan, V. M., and Bartolotta, P. A., “Considerations Concerning Fatigue Life of Metal Matrix Composites,” NASA Tech Memo 106144, Lewis Research Center, Cleveland, OH, May 1993.
17.
Talreja
R.
Fatigue of Composite Materials: Damage Mechanisms and Fatigue Life Diagrams
,” Proceedings of the Royal Society of London
, Vol. A378
, 1981
, pp. 461
–475
.18.
Tong, M. T., and Chamis, C. C., “Simulation of Thermomechanical Fatigue Behavior of SCS6/Ti-24Al-llNb Composite,” HITEMP Review 1993, NASA Conference Publication 19117, Vol. II, 1993, pp. 40-1–40-10.
19.
Chamis, C. C., Murthy, P. L. N., and Hopkins, D. A., “Computational Simulation of High Temperature Metal Matrix Composites Cyclic Behavior,” NASA TM-102115, Lewis Research Center, Cleveland, OH 1988.
20.
Rabzak, C., Saravanos, D. A., and Chamis, C. C., “Optimal Synthesis of SCS6/Ti-24Al-llNb Composites for Improved Fatigue Behavior,” HITEMP Review 1993, NASA Conference Publication 19117, Vol. II, 1993, pp. 41-1–41-11.
21.
Hart K. A., and Mall, S., “Response of a Quasi-Isotropic Metal Matrix Composite Under Thermomechanical Fatigue,” Thermomechanical Behavior of Advanced Structural Materials, AD-Vol. 34, AMD-Vol. 173, W. F. Jones, ed., American Society of Mechanical Engineers, New York, 1993, pp. 47–60.
22.
Mall
S.
Schubbe
J. J.
Thermomechanical Fatigue Behavior of a Cross-Ply SCS-6/Ti-15-3 Metal Matrix Composite
,” Composites Science and Technology
, Vol. 50
, 1994
, pp. 49
–57
.23.
Mall
S.
Portner
B.
Characterization of Fatigue Behavior in Cross-Ply Laminate of SCS-6/Ti-15-3 Metal matrix Composite at Elevated Temperature
,” ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol. 114
, 1992
, pp. 409
–415
.24.
Mall, S., Hanson, D. G., Nicholas, T., and Russ, S. M., “Thermomechanical Fatigue Behavior of a Cross-Ply SCS-6/β21-S Metal Matrix Composite,” Constitutive Behavior of High Temperature Composites, MD-Vol. 40, B. S. Majumdar, G. M. Newaz and S. Mall, Eds., American Society of Mechanical Engineers, New York, 1992, pp. 91–106.
25.
Gravett, P. W., “A Life Prediction Method for Matrix Dominated Fatigue Failures of SCS-6/Ti-15-3 MMC,” Reliability, Stress Analysis, and Failure Prevention, DE-Vol. 55, American Society of Mechanical Engineers, New York, 1993, pp. 223–230.
26.
Smith
K. N.
Watson
R.
Topper
T. H.
A Stress-Strain Function for the Fatigue of Metals
,” Journal of Materials
, 5
, 1970
, pp. 767
–778
.27.
Neu, R. W., and Nicholas, T., “Methodologies for Predicting the Thermomechanical Fatigue Life of Unidirectional Metal Matrix Composites,” Third Symposium on Advances in Fatigue Lifetime Predictive Techniques, ASTM STP 1292, M. R. Mitchell and R. W. Landgraff, eds., American Society for Testing and Materials, Philadelphia, 1995.
28.
Neu
R. W.
A Mechanistic-based Thermomechanical Fatigue Life Prediction Model for Metal Matrix Composites
,” Fatigue and Fracture of Engineering Materials and Structures
, Vol. 16
, No. 8
, 1993
, pp. 811
–828
.29.
Nicholas
T.
Russ
S. M.
Elevated Temperature Fatigue Behavior of SCS-6/Ti-24Al-11Nb
,” Mat. Sci. Eng.
, Vol. A153
, 1992
, pp. 514
–519
.30.
Nicholas, T., Russ, S. M., Schehl, N., and Cheney, A., “Frequency and Stress Ratio Effects on Fatigue of Unidirectional SCS-6/Ti-24Al-11Nb Composite At 650°C,” FATIGUE 93, Vol. II, J.-P. Bailon and J. I. Dickson, Eds., EMAS, 1993, pp. 995–1000.
31.
Nicholas, T., Russ, S. M., Neu, R. W., and Schehl, N., “Life Prediction of a [0/90] Metal Matrix Composite Under Isothermal and Thermomechanical Fatigue,” Life Prediction Methodology for Titanium Matrix Composites, ASTM STP 1253, W. S. Johnson, J. M. Larsen, and B. N. Cox, Eds., American Society for Testing and Materials, Philadelphia, 1995.
32.
Russ, S. M., Nicholas, T., Bates, M., and Mall, S., “Thermomechanical Fatigue of SCS-6/Ti-24Al-11Nb Metal Matrix Composite,” Failure Mechanisms in High Temperature Composite Materials, AD-Vol. 22/AMD-Vol. 122, G. K. Haritos, G. Newaz and S. Mail, eds., American Society of Mechanical Engineers, New York, 1991, pp. 37–43.
33.
Nicholas, T., “An Approach to Fatigue Life Modeling in Titanium Matrix Composites,” Mat. Sci. Eng., 1995 (in press).
34.
Neu, R. W., and Nicholas, T., “Thermomechanical Fatigue of SCS-6/TIMETAL®21S under Out-of-Phase Loading,” Thermomechanical Behavior of Advanced Structural Materials, W. F. Jones, ed., AD-Vol. 34/AMD-Vol. 173, ASME, New York, 1993, pp. 97–111.
35.
Neu
R. W.
Nicholas
T.
Effect of Laminate Orientation on the Thermomechanical Fatigue Behavior of a Titanium Matrix Composite
,” Journal of Composites Technology and Research, JCTRER
, Vol. 16
, 1994
, pp. 214
–224
.36.
Neu, R. W., “Thermomechanical Fatigue Damage Mechanism Maps for Metal Matrix Composites,” Thermo-Mechanical Fatigue Behavior of Materials, ASTM STP 1263, M. J. Verrilli and M. G. Castelli, eds., American Society for Testing and Materials, Philadelphia, 1995.
37.
Nicholas, T., and Johnson, D. A., “Time- and Cycle-Dependent Aspects of Thermal and Mechanical Fatigue in a Titanium Matrix Composite,” Thermo-Mechanical Fatigue Behavior of Materials, ASTM STP 1263, M. J. Verrilli, and M. G. Castelli, Eds., American Society for Testing and Materials, Philadelphia, 1995.
38.
Johnson, W. S., Mirdamadi, M., and Bakuckas, J. G., Jr., “Damage Accumulation in Titanium Matrix Composites Under Generic Hypersonic Vehicle Flight Simulation and Sustained Loads,” Thermo-Mechanical Fatigue Behavior of Materials, ASTM STP 1263, M. J. Verrilli, and M. G. Castelli, eds., American Society for Testing and Materials, Philadelphia, 1995.
This content is only available via PDF.
Copyright © 1995
by The American Society of Mechanical Engineers
You do not currently have access to this content.