Surface defects corresponding to adatoms, vacancies and steps interact, affecting and often dominating kinetic processes associated with thin-film growth. A discrete harmonic model for the evaluation of the interaction energy between surface defects is presented. It is based on the concept of eigenstrains and allows for the accurate evaluation of the elastic field, both at the immediate vicinity of the defects, as well as in the far field. Results for the interaction energy suggest conditions for which a body-centered-cubic crystal surface will grow in a stable, two-dimensional, step-flow mode. In order to verify the accuracy of the discrete elastic model, we present results of atomic simulations that incorporate Embedded Atom Method (EAM) potentials. The discrete elastic model results compare favorably with results from our atomic EAM simulations and agree with the far-field predictions of continuum elastic theory.

1.
Amar
J. G.
, and
Family
F.
,
1996
, “
Step-Adatom Attraction as a New Mechanism for Instability in Epitaxial Growth
,”
Phys. Rev. Lett.
, Vol.
77
, pp.
4584
4587
.
2.
Born, M., and Huang, K., 1954, Dynamic Theory of Crystal Lattices, Oxford University Press, UK.
3.
Cammarata
R. C.
, and
Sieradzki
K.
,
1989
, “
Effect of Surface Stress on the Elastic Moduli of Thin Films and Superlattices
,”
Phys. Rev. Lett.
, Vol.
62
, pp.
2005
2008
.
4.
Cammarata
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin Films
,”
Progress in Surface Science
, Vol.
46
, pp.
1
38
.
5.
Duport
C.
,
Nozieres
P.
, and
Villain
J.
,
1995
a, “
New Instability in Molecular Beam Epitaxy
,”
Phys. Rev. Lett.
, Vol.
74
, pp.
134
137
.
6.
Duport
C.
,
Politi
P.
, and
Villain
J.
,
1995
b, “
Growth Instabilities Induced by Elasticity in a Vicinal Surface
,”
J. Phys. I France
, Vol.
5
, pp.
1317
1350
.
7.
Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,” Proc. Roy. Soc., A241, pp. 376–396.
8.
Grabow
M. H.
, and
Gilmer
G. H.
,
1988
, “
Thin Film Growth Modes, Wetting and Cluster Nucleation
,”
Surf. Sci.
, Vol.
194
, pp.
333
346
.
9.
Lau
K. H.
, and
Kohn
W.
,
1977
, “
Elastic Interaction of Two Atoms Adsorbed on a Solid Surface
,”
Surf. Sci.
, Vol.
65
, pp.
607
618
.
10.
Lau
K. H.
,
1978
, “
Anisotropic, Long-Range Elastic Interaction between Adatoms
,”
Solid State Communications
, Vol.
28
, pp.
757
762
.
11.
Maradudin
A. A.
,
1958
, “
Screw Dislocations and Discrete Elastic Theory
,”
J. Phys. Chem. Solids
, Vol.
9
, pp.
1
20
.
12.
Marchenko
V. I.
, and
Parchin
A. Y.
,
1980
, “
Elastic Properties of Crystal Surfaces
,”
Sov. Phys. JETP
, Vol.
52
, pp.
129
131
.
13.
Mindlin
R. D.
,
1972
, “
Elasticity, Piezoelectricity and Crystal Lattice Dynamics
,”
J. Elasticity
, Vol.
2
(
4
), pp.
217
282
.
14.
Mindlin
R. D.
,
1970
, “
Lattice Theory of Shear Modes of Vibration and Torsional Equilibrium of Simple Cubic Crystal Plates and Bars
,”
Int. J. Solids and Structures
, Vol.
6
, pp.
725
738
.
15.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, London.
16.
Peralta
A.
,
Kouris
D.
,
Knap
J.
, and
Sieradzki
K.
,
1998
, “
Eigenstrains and the Elastic Field of an Adatom
,”
Journal of the Mechanics and Physics of Solids
, Vol.
46
:
9
, pp.
1557
1579
.
17.
Qin
S.
,
Kouris
D.
,
Peralta
A.
, and
Hirose
Y.
,
1996
, “
Micromechanical Analysis of Surface Defects
,”
Mathematics and Mechanics of Solids
, Vol.
1
, pp.
369
391
.
18.
Sato
A.
,
Watanabe
Y.
, and
Mura
T.
,
1988
, “
Octahedral Defects in a b.c.c. Lattice Examined by Lattice Theory
,”
J. Phys. Chem. Solids
, Vol.
49
(
5
), pp.
529
540
.
19.
Shilkrot
L. E.
, and
Srolovitz
D. J.
,
1996
, “
Elastic Field of a Surface Step: Atomistic Simulations and Anisotropic Elastic Theory
,”
Phys. Rev. B
, Vol.
53
(
16
), pp.
11120
11127
.
20.
Shilkrot
L. E.
, and
Srolovitz
D. J.
,
1997
, “
Adatom-Step Interactions: Atomistic Simulations and Elastic Models
,”
Phys. Rev. B
, Vol.
55
(
7
), pp.
4737
4744
.
21.
Stewart
J.
,
Pohland
O.
, and
Gibson
M. J.
,
1994
, “
Elastic-Displacement Field of an Isolated Surface Step
,”
Phys. Rev. B
, Vol.
49
(
19
), pp.
13848
13858
.
22.
Stoneham
A. M.
,
1977
, “
Elastic Interactions between Surface Adatoms and between Surface Clusters
,”
Solid State Communications
, Vol.
24
, pp.
425
428
.
23.
Stroh
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Phil. Mag.
, Vol.
3
, pp.
625
646
.
24.
Wang
S. C.
, and
Ehrlich
G.
,
1993
a, “
Adatom Motion to Lattice Steps: A Direct View
,”
Phys. Rev. Lett.
, Vol.
70
, pp.
41
44
.
25.
Wang
S. C.
, and
Ehrlich
G.
,
1993
b, “
Atom Condensation at Lattice Steps and Clusters
,”
Phys. Rev. Lett.
, Vol.
71
, pp.
4174
4177
.
This content is only available via PDF.
You do not currently have access to this content.