This article analyzes the formability data sets for aluminum killed steel (Laukonis, J. V., and Ghosh, A. K., 1978, “Effects of Strain Path Changes on the Formability of Sheet Metals,” Metall. Trans. A., 9, pp. 1849–1856), for Al 2008-T4 (Graf, A., and Hosford, W., 1993, “Effect of Changing Strain Paths on Forming Limit Diagrams of Al 2008-T4,” Metall. Trans. A, 24A, pp. 2503–2512) and for Al 6111-T4 (Graf, A., and Hosford, W., 1994, “The Influence of Strain-Path Changes on Forming Limit Diagrams of Al 6111 T4,” Int. J. Mech. Sci., 36, pp. 897–910). These articles present strain-based forming limit curves (ϵFLCs) for both as-received and prestrained sheets. Using phenomenological yield functions, and assuming isotropic hardening, the ϵFLCs are transformed into principal stress space to obtain stress-based forming limit curves (σFLCs) and the principal stresses are transformed into effective stress and mean stress space to obtain the extended stress-based forming limit curves (XSFLCs). A definition of path dependence for the σFLC and XSFLC is proposed and used to classify the obtained limit curves as path dependent or independent. The path dependence of forming limit stresses is observed for some of the prestrain paths. Based on the results, a novel criterion that, with a knowledge of the forming limit stresses of the as-received material, can be used to predict whether the limit stresses are path dependent or independent for a given prestrain path is proposed. The results also suggest that kinematic hardening and transient hardening effects may explain the path dependence observed in some of the prestrain paths.

1.
Keeler
,
S. P.
, and
Backofen
,
W. A.
, 1963, “
Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches
,”
ASM Trans. Q.
0097-3912,
56
, pp.
25
48
.
2.
Graf
,
A.
, and
Hosford
,
W.
, 1993, “
Effect of Changing Strain Paths on Forming Limit Diagrams of Al 2008-T4
,”
Metall. Trans. A
0360-2133,
24A
, pp.
2503
2512
.
3.
Laukonis
,
J. V.
, and
Ghosh
,
A. K.
, 1978, “
Effects of Strain Path Changes on the Formability of Sheet Metals
,”
Metall. Trans. A
0360-2133,
9
(
12
), pp.
1849
1856
.
4.
Graf
,
A.
, and
Hosford
,
W.
, 1994, “
The Influence of Strain-Path Changes on Forming Limit Diagrams of Al 6111 T4
,”
Int. J. Mech. Sci.
0020-7403,
36
(
10
), pp.
897
910
.
5.
Arrieux
,
R.
, 1995, “
Determination and Use of the Forming Limit Stress Diagrams in Sheet Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
53
(
1–2
), pp.
47
56
.
6.
Gronostajski
,
I.
, 1984, “
Sheet Metal Forming Limits for Complex Strain Paths
,”
J. Mech. Work. Technol.
0378-3804,
10
, pp.
349
362
.
7.
Embury
,
J. D.
, and
LeRoy
,
G. H.
, 1977, “
Failure Maps Applied to Metal Deformation Processes
,” in
Advances in Research on the Strength and Fracture of Materials
,
Pergamon
,
New York
.
8.
Stoughton
,
T. B.
, 2000, “
A General Forming Limit Criterion for Sheet Metal Forming
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
1
27
.
9.
Stoughton
,
T. B.
, 2001, “
Stress-Based Forming Limits in Sheet-Metal Forming
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
(
4
), pp.
417
422
.
10.
Sakash
,
A.
,
Moondra
,
S.
, and
Kinsey
,
B. L.
, 2006, “
Effect of Yield Criterion on Numerical Simulation Results Using a Stress-Based Failure Criterion
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
436
444
.
11.
Stoughton
,
T. B.
, and
Zhu
,
X.
, 2004, “
Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD
,”
Int. J. Plast.
0749-6419,
20
(
8–9
), pp.
1463
1486
.
12.
Yoshida
,
K.
,
Kuwabara
,
T.
, and
Kuroda
,
M.
, 2007, “
Path Dependence of the Forming Limit Stresses in a Sheet Metal
,”
Int. J. Plast.
0749-6419,
23
(
3
), pp.
361
384
.
13.
Chow
,
C. L.
, and
Yang
,
X. J.
, 2003, “
Prediction of Forming Limit Diagrams With Mixed Anisotropic Kinematic-Isotropic Hardening Plastic Constitutive Model Based on Stress Criteria
,”
J. Mater. Process. Technol.
0924-0136,
133
(
3
), pp.
304
310
.
14.
Wu
,
P. D.
,
Graf
,
A.
,
MacEwen
,
S. R.
,
Lloyd
,
D. J.
,
Jain
,
M.
, and
Neale
,
K. W.
, 2005, “
On Forming Limit Stress Diagram Analysis
,”
Int. J. Solids Struct.
0020-7683,
42
(
8
), pp.
2225
2241
.
15.
Marciniak
,
Z.
, and
Kuczynski
,
K.
, 1967, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
0020-7403,
9
, pp.
609
620
.
16.
Stoughton
,
T.
, and
Yoon
,
J.
, 2005, “
Sheet Metal Formability Analysis for Anisotropic Materials Under Non-Proportional Loading
,”
Int. J. Mech. Sci.
0020-7403,
47
(
12
), pp.
1972
2002
.
17.
Simha
,
C. H. M.
,
Gholipour
,
J.
,
Bardelcik
,
A.
, and
Worswick
,
M. J.
, 2007, “
Prediction of Necking in Tubular Hydroforming Using an Extended Stress-Based FLC
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
1
), pp.
36
47
.
18.
Simha
,
C. H. M.
,
Grantab
,
R.
, and
Worswick
,
M. J.
, 2007, “
Application of an Extended Stress-Based Forming Limit Curve to Predict Necking in Stretch Flange Forming
,”
ASME J. Manuf. Sci. Eng.
1087-1357, in press.
19.
Yoshida
,
K.
,
Kuwabara
,
T.
, and
Kuroda
,
M.
, 2005, “
Forming Limit Stresses of Sheet Metal Under Proportional and Combined Loadings
,”
AIP Conf. Proc.
0094-243X,
778
, pp.
478
483
.
20.
Simha
,
C. H. M.
,
Grantab
,
R.
, and
Worswick
,
M. J.
, 2007, “
Computational Analysis of Stress-Based Forming Limits
,”
Int. J. Solids Struct.
0020-7683,
44
(
25-26
), pp.
8663
8684
.
21.
Barlat
,
F.
, and
Lian
,
J.
, 1989, “
Plastic Behavior and Stretchability of Sheet Metals 1. A Yield Function for Orthotropic Sheets Under Plane-Stress Conditions
,”
Int. J. Plast.
0749-6419,
5
(
1
), pp.
51
66
.
22.
Hosford
,
W. F.
, 1972, “
Generalized Isotropic Yield Criterion
,”
ASME J. Appl. Mech.
0021-8936,
39
(
2
), pp.
607
609
.
23.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
, 1993, “
A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor
,”
J. Mech. Phys. Solids
0022-5096,
41
(
12
), pp.
1859
1886
.
24.
Cao
,
J.
,
Yao
,
H.
,
Karafillis
,
A.
, and
Boyce
,
M. C.
, 2000, “
Prediction of Localized Thinning in Sheet Metal Using a General Anisotropic Yield Criterion
,”
Int. J. Plast.
0749-6419,
16
(
9
), pp.
1105
1129
.
25.
Koc
,
M.
,
Aue-u-lan
,
Y.
, and
Altan
,
T.
, 2001, “
On the Characteristics of Tubular Materials for Hydroforming Experimentation and Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
5
), pp.
761
772
.
26.
Lege
,
D.
,
Barlat
,
F.
, and
Brem
,
J.
, 1989, “
Characterization and Modeling of the Mechanical Behavior and Formability of a 2008-T4 Sheet Sample
,”
Int. J. Mech. Sci.
0020-7403,
31
(
7
), pp.
549
563
.
27.
Khan
,
A. S.
, and
Huang
,
S.
, 1995,
Continuum Theory of Plasticity
,
Wiley
,
New York
.
28.
Lee
,
M.-G.
,
Kim
,
D.
,
Kim
,
C.
, and
Wenner
,
M. L.
,
Wagoner
,
R. H.
, and
Chung
,
K.
, 2005, “
Springback Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions: Part II: Characterization of Material Properties
,”
Int. J. Plast.
0749-6419,
21
(
5
), pp.
883
914
.
29.
Maple Users Guide
Version 10, 2006,
Maplesoft
,
Waterloo, ON, Canada
.
You do not currently have access to this content.