Microelectromechanical systems (MEMS), particularly those with radio frequency (rf) applications, have demonstrated significantly better performance over current electromechanical and solid-state technologies. Surface roughness and asperity microcontacts are critical factors that can affect contact behavior at scales ranging from the nano to the micro in MEMS devices. Recent investigations at the continuum level have underscored the importance of microstructural effects on the inelastic behavior of asperity microcontacts. Hence, a microstructurally based approach that accounts for the inhomogeneous deformation of the asperity microcontacts under cyclic loading and that is directly related to asperity physical scales and anisotropies can provide a detailed understanding of the deformation mechanisms associated with asperity microcontacts so that guidelines can be incorporated in the design and fabrication process to effectively size critical components and forces for significantly improved device durability and performance. A physically based microstructural representation of fcc crystalline materials that couples a multiple-slip crystal plasticity formulation to dislocation densities is used in a specialized finite-element modeling framework. The asperity model and the loading conditions are based on realistic service conditions consistent with rf MEMS with metallic normal contacts. The evolving microstructure, stress fields, contact width, hardness, residual effects, and the localized phenomena that can contribute to failure initiation and evolution in the flattening of single crystal gold asperity microcontacts are characterized for a loading-unloading cycle. It is shown that the nonuniform loading conditions due to asperity geometry and contact loading and the size effects due to asperity dimensions result in significant contribution of the geometrically necessary dislocation densities to stress, deformation, and microstructural evolution of crystalline asperities. This is not captured in modeling efforts based on von Mises continuum plasticity formulations. Residual strains and stresses are shown to develop during the cyclic loading. Localized tensile stress regions are shown to develop due to stress reversal and strain hardening during both loading and unloading regimes. Hardness predictions also indicate that nano-indentation hardness values of the contact material can overestimate the contact force in cases, where a rigid flat surface is pressed on a surface roughness asperity.

1.
Brown
,
E. R.
, 1998, “
RF-MEMS Switches for Reconfigurable Integrated Circuits
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
46
, pp.
1868
1880
.
2.
Park
,
J. Y.
,
Kim
,
G. H.
,
Chung
,
K. W.
, and
Bu
,
J. U.
, 2001, “
Monolithically Integrated Micromachined RF MEMS Capacitive Switches
,”
Sens. Actuators, A
0924-4247,
89
, pp.
88
94
.
3.
Rezvanian
,
O.
,
Zikry
,
M. A.
,
Brown
,
C.
, and
Krim
,
J.
, 2007, “
Surface Roughness, Asperity Contact and Gold RF MEMS Switch Behavior
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2006
2015
.
4.
Patton
,
S. T.
, and
Zabinski
,
J. S.
, 2005, “
Fundamental Studies of Au Contacts in MEMS RF Switches
,”
Tribol. Lett.
1023-8883,
18
, pp.
215
230
.
5.
Hyman
,
D.
, and
Mehregany
,
M.
, 1999, “
Contact Physics of Gold Microcontacts for MEMS Switches
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
, pp.
357
364
.
6.
Rebeiz
,
G. M.
, 2003,
RF MEMS, Theory, Design, and Technology
,
Wiley
,
New York
.
7.
Ashby
,
M. F.
, 1970, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
0031-8086,
21
, pp.
399
424
.
8.
Hughes
,
D. A.
, and
Hansen
,
N.
, 1997, “
High Angle Boundaries Formed by Grain Subdivision Mechanisms
,”
Acta Mater.
1359-6454,
45
, pp.
3871
3886
.
9.
Hyun
,
S.
,
Pei
,
L.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
, 2004, “
Finite-Element Analysis of Contact Between Self-Affine Surfaces
,”
Phys. Rev. E
1063-651X,
70
, p.
026117
.
10.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
11.
Komvopoulos
,
K.
, and
Ye
,
N.
, 2001, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
0742-4787,
123
, pp.
632
640
.
12.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
, pp.
86
93
.
13.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
263
.
14.
Geers
,
M. G. D.
,
Brekelmans
,
W. A. M.
, and
Bayley
,
C. J.
, 2007, “
Second-Order Crystal Plasticity: Internal Stress Effects and Cyclic Loading
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
, pp.
S133
S145
.
15.
Geers
,
M. G. D.
,
Brekelmans
,
W. A. M.
, and
Janssen
,
P. J. M.
, 2006, “
Size Effects in Miniaturized Polycrystalline FCC Samples: Strengthening Versus Weakening
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
7304
7321
.
16.
Franciosi
,
P.
, and
Zaoui
,
A.
, 1982, “
Multislip in fcc Crystals; A Theoretical Approach Compared With Experimental Data
,”
Acta Metall.
0001-6160,
30
, pp.
1627
1637
.
17.
Evers
,
L. P.
,
Brekelmans
,
W. A. M.
, and
Geers
,
G. D.
, 2004, “
Scale Dependent Crystal Plasticity Framework With Dislocation Density and Grain Boundary Effects
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
5209
5230
.
18.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
, 2003, “
Grain Boundary Effects and Void Porosity Evolution
,”
Mech. Mater.
0167-6636,
35
, pp.
537
552
.
19.
Essmann
,
U.
, and
Mughrabi
,
H.
, 1979, “
Annihilation of Dislocations During Tensile and Cyclic Deformation and Limits of Dislocation Densities
,”
Philos. Mag. A
0141-8610,
40
, pp.
731
756
.
20.
Nix
,
W. D.
,
Gibeling
,
J. C.
, and
Hughes
,
D. A.
, 1985, “
Time-Dependent Deformation of Metals
,”
Metall. Trans. A
0360-2133,
16
, pp.
2215
2226
.
21.
Mughrabi
,
H.
, 1987, “
A Two-Parameter Description of Heterogeneous Dislocation Distributions in Deformed Metal Crystals
,”
Mater. Sci. Eng.
0025-5416,
85
, pp.
15
31
.
22.
Estrin
,
Y.
,
Toth
,
L. S.
,
Molinari
,
A.
, and
Brechet
,
Y.
, 1998, “
A Dislocation-Based Model for All Hardening Stages in Large Strain Deformation
,”
Acta Mater.
1359-6454,
46
, pp.
5509
5522
.
23.
Rezvanian
,
O.
,
Zikry
,
M. A.
, and
Rajendran
,
A. M.
, 2007, “
Statistically Stored, Geometrically Necessary and Grain Boundary Dislocation Densities: Microstructural Representation and Modelling
,”
Proc. R. Soc. London, Ser. A
1364-5021,
463
, pp.
2833
2853
.
24.
Rezvanian
,
O.
,
Zikry
,
M. A.
, and
Rajendran
,
A. M.
, 2008, “
Microstructural Modeling in f.c.c. Crystalline Materials in a Unified Dislocation-Density Framework
,”
Mater. Sci. Eng., A
0921-5093,
494
, pp.
80
85
.
25.
Hughes
,
D. A.
, 2001, “
Microstructure Evolution, Slip Patterns and Flow Stress
,”
Mater. Sci. Eng., A
0921-5093,
319–321
, pp.
46
54
.
26.
Zikry
,
M. A.
, 1994, “
An Accurate and Stable Algorithm for High Strain-Rate Finite Strain Plasticity
,”
Comput. Struct.
0045-7949,
50
, pp.
337
350
.
27.
Franciosi
,
P.
, 1985, “
The Concepts of Latent Hardening and Strain Hardening in Metallic Single Crystals
,”
Acta Metall.
0001-6160,
33
, pp.
1601
1612
.
28.
Rezvanian
,
O.
,
Brown
,
C.
,
Zikry
,
M. A.
,
Kingon
,
A. I.
,
Krim
,
J.
,
Irving
,
D. L.
, and
Brenner
,
D. W.
, 2008, “
The Role of Creep in the Time-Dependent Resistance of Ohmic Gold Contacts in Radio Frequency Microelectromechanical System Devices
,”
J. Appl. Phys.
0021-8979,
104
, p.
024513
.
29.
Ma
,
J. B.
,
Zikry
,
M. A.
,
Ashmawi
,
W. M.
, and
Brenner
,
D. W.
, 2007, “
Hierarchical Modeling of Nanoindentation and Microstructural Evolution of Face-Centered Cubic Gold Aggregates
,”
J. Mater. Res.
0884-2914,
22
, pp.
627
643
.
30.
McCann
,
M. M.
, and
Corcoran
,
S. G.
, 2004, “
Nanoindentation Behavior of Gold Single Crystals
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
795
, pp.
U8.30.1
U8.30.7
.
You do not currently have access to this content.