In components under static creep loading condition, the multiaxial stress fields appear due to the plastic constraint and they produce a more brittle type cracking behavior. From a practical standpoint, the characterizations of creep crack growth rates under the multiaxial stress field are important to improve the methods for creep life extension. In this paper, creep crack growth tests were conducted using round bar specimens with sharp circular notches for tungsten-added 12%Cr ferritic heat-resistant steel (W12%Cr steel), and the effect of multiaxiality on creep ductility and creep crack growth rate were investigated. Furthermore, three-dimensional elastic-plastic creep finite element analyses were conducted to clarify the effect of multiaxiality on creep crack growth.

1.
Fujita
,
T.
,
Asakura
,
K.
,
Sawada
,
T.
,
Takamatsu
,
T.
, and
Otoguro
,
Y.
, 1981, “
Creep Rupture Strength and Microstructure of Low C–10Cr–2Mo Heat-Resisting Steels with V and Nb
,”
Metall. Trans. A
0360-2133,
12
, pp.
1071
1079
.
2.
Fujita
,
T.
, 2000, “
Materials for Future Power Plants
,”
Advanced Materials & Processes
,
157
(
6
), pp.
55
61
.
3.
Yoda
,
M.
,
Yokota
,
O.
,
Sugiura
,
R.
,
Yokobori
,
A. T.
, Jr.
, and
Yokobori
,
T.
, 2003, “
Crack Growth Characteristics in 12Cr Steel Under Creep and Creep-Fatigue Interaction Conditions
,”
Strength, Fracture and Complexity
,
1
(
3
), pp.
167
175
.
4.
Yokota
,
O.
,
Sugiura
,
R.
,
Yoda
,
M.
,
Yokobori
,
A. T.
, Jr.
, and
Yokobori
,
T.
, 2005, “
Crack Growth Characteristics and Damage in 12Cr Steel Under High Temperature Creep and Creep-Fatigue Conditions
,”
Proceedings of ICF11
.
5.
Sugiura
,
R.
,
Yokobori
,
A. T.
, Jr.
,
Takamori
,
S.
,
Tabuchi
,
M.
,
Fuji
,
A.
,
Yoda
,
M.
,
Kobayashi
,
K.
, and
Yokobori
,
T.
, 2006, “
Effects of Alloying Additions and Material Structures on the High Accuracy of the Predictive Law of Creep Crack Growth for W Strengthened 9–12%Cr Ferritic Heat-Resistant Steel
,”
J. Jpn. Inst. Met.
0021-4876,
70
(
5
), pp.
452
460
.
6.
Yokobori
,
T.
, 1974, Strength and Materials (Zairyoukyoudogaku),
Iwanami
,
24
, pp.
110
111
.
7.
Yokobori
,
A. T.
, Jr.
,
Sugiura
,
R.
,
Tabuchi
,
M.
,
Fuji
,
A.
,
Adachi
,
T.
, and
Yokobori
,
T.
, 2005, “
The Effect of Multi-Axial Stress Component on Creep Crack Growth Rate Concerning Structural Brittleness
,”
Proceedings of ICF11
.
8.
Adachi
,
T.
,
Yokobori
,
A. T.
, Jr.
,
Tabuchi
,
M.
,
Fuji
,
A.
,
Yokobori
,
T.
, and
Nikbin
,
K.
, 2004, “
The Proposal of Q* Parameter and Derivation of the Law of Creep Crack Growth Life for a Round Bar Specimen With a Circular Notch for Cr–Mo–V Steel
,”
Mater. High. Temp.
0960-3409,
21
(
2
), pp.
95
100
.
9.
Yokobori
,
A. T.
, Jr.
,
Yokobori
,
T.
, 1989, “
New Concept to Crack Growth at High Temperature Creep and Creep-Fatigue
,”
Advances in Fracture Research, Proceedings of ICF7
,
K.
Salama
,
K.
Ravi-chandar
,
D. M. R.
Taplin
, and
P.
Rama Rao
, eds.,
Pergamon
,
New York
, Vol.
2
, pp.
1723
1735
.
10.
Yokobori
,
A. T.
, Jr.
,
Uesugi
,
T.
,
Yokobori
,
T.
,
Fuji
,
A.
,
Kitagawa
,
M.
,
Yamaya
,
I.
,
Tabuchi
,
M.
, and
Yagi
,
K.
, 1998, “
Estimation of Creep Crack Growth Rate in IN-100 Based on the Q* Parameter Concept
,”
J. Mater. Sci.
0022-2461,
33
, pp.
1555
1562
.
11.
Peterson
,
R. E.
, 1953,
Stress Concentration Design Factors
,
Wiley
,
New York
, pp.
33
.
12.
ASTM E1457-07
, 2007, “
Standard Test Method for Measurement of Creep Crack Growth Times in Metals
.”
13.
Johnson
,
H. H.
, 1965, “
Calibrating the Electric Potential Method for Studying Slow Crack Growth
,”
Mater. Res. Stand.
0025-5394,
5
, pp.
442
445
.
14.
Schwalbe
,
K. H.
, and
Hellman
,
D.
, 1980, “
Application of the Electrical Potential Method to Crack Length Measurements Using Johnson’S Formula
,”
J. Test. Eval.
0090-3973,
9
(
4
), pp.
218
220
.
15.
Landes
,
J. D.
, and
Begley
,
J. A.
, 1976, “
A Fracture Mechanics Approach to Creep Crack Growth
,”
ASTM Spec. Tech. Publ.
0066-0558,
590
, pp.
128
148
.
16.
Ohji
,
K.
,
Ogura
,
K.
, and
Kubo
,
S.
, 1975,
Trans. Jpn. Soc. Mech. Eng.
0375-9466,
44
, pp.
1831
1838
.
17.
Taira
,
S.
,
Ohtani
,
R.
, and
Kitamura
,
T.
, 1979, “
Application of J-Integral to High-Temperature Crack Propagation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
101
, pp.
154
167
.
18.
Koterazawa
,
R.
, and
Mori
,
T.
, 1977 “
Applicability of Fracture Mechanics Parameters to Crack Propagation Under Creep Condition
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
, pp.
298
305
.
19.
Fuji
,
A.
, and
Kitagawa
,
M.
, 1994, “
A Comparison of Creep Crack Growth Behavior in Nickel Based Superalloy With Low Alloy Steel
,”
Advances in Fracture and Structural Integrity, Proceedings of ICF8
,
V. V.
Panasyuk
, ed., p.
487
.
20.
Dogan
,
B.
, and
Schwalbe
,
K. H.
, 1992, “
Creep Crack Growth Behavior of Ti-6242
,”
ASTM Symposium
, Philadelphia,
H. A.
Ernst
,
A.
Saxena
, and
D. L.
McDowell
, , eds., ASTM STP 1131, pp.
284
296
.
21.
Yokobori
,
A. T.
, Jr.
,
Yokobori
,
T.
,
Kuriyama
,
T.
,
Kako
,
T.
, and
Kaji
,
Y.
, 1986, “
Characterization of High Temperature Creep Crack Growth Rate in Terms of Independent Parameters
,”
Proceedings of the International on Creep
, JSME, I Mech E, ASME, pp.
135
140
.
22.
Committee on Fracture Mechanics,
Stress Intensity Factors Handbook
, 1987,
Y.
Murakami
.
S.
Aoki
,
N.
Hasebe
,
Y.
Itoh
,
H.
Miyata
,
N.
Miyazaki
,
H.
Terada
,
K.
Tohgo
,
M.
Toya
, and
R.
Yuuki
, eds.,
The Society of Materials Science
, Japan, Vol.
2
, pp.
643
652
.
23.
Yokobori
,
A. T.
, Jr.
, and
Yokobori
,
T.
, 1996, “
Comparative Study on Characterization Parameters for High Temperature Creep Crack Growth With Special Emphasis on Dual Value Behavior of Crack Growth Rate
,”
Eng. Fract. Mech.
0013-7944,
55
, pp.
493
503
.
24.
Tabuchi
,
M.
,
Kubo
,
K.
,
Yagi
,
K.
,
Yokobori
,
A. T.
, Jr.
, and
Fuji
,
A.
, 1999, “
Results of a Japanese Round Robin on Creep Crack Growth Evaluation Methods for Ni-Base Superalloys
,”
Eng. Fract. Mech.
0013-7944,
62
, pp.
47
60
.
25.
Fuji
,
A.
,
Yokobori
,
A. T.
, Jr.
,
Kikuchi
,
M.
,
Tabuchi
,
M.
, and
Yokobori
,
T.
, 2003, “
Effect of Microstructure on the Characterization of Creep Crack Growth Rate and Rupture in TiAL Intermetallic Alloys
,”
Int. J. Pressure Vessels Piping
0308-0161,
80
, pp.
435
480
.
26.
Yokobori
,
A. T.
, Jr.
,
Tabuchi
,
M.
,
Fuji
,
A.
, and
Kikuchi
,
M.
, 2001, “
The Characterization of Creep Crack Growth Rate and Its Life of Cast TiAl–Fe–V–B Alloys
,”
Proceedings of APCFS&ATEM’01
, pp.
322
326
.
27.
Yokobori
,
A. T.
, Jr.
,
Yokobori
,
T.
, and
Yamazaki
,
K.
, 1996, “
A Characterization of High Temperature Creep Fracture Life for Ceramics
,”
J. Mater. Sci. Lett.
0261-8028,
15
, pp.
2002
2007
.
28.
Yokobori
,
A. T.
, Jr.
,
Yokobori
,
T.
,
Nishihara
,
T.
, and
Yamaoka
,
T.
, 1992, “
An Alternative Correlating Parameter for Creep Crack Growth Rate and Its Application: Derivation of the Parameter Q*
,”
Mater. High. Temp.
0960-3409,
10
(
2
), pp.
108
118
.
29.
Yokobori
,
A. T.
, Jr.
, and
Prager
,
M.
, 1999, “
Proposal of a New Concept on Creep Fracture Remnant Life for a Precracked Specimen
,”
Mater. High. Temp.
0960-3409,
10
(
3
), pp.
137
141
.
30.
Garofalo
,
F.
, 1965,
Fundamentals of Creep and Creep-Rupture in Metals
,
M.
Adachi
, ed.,
Maruzen
,
Tokyo
.
31.
Tabuchi
,
M.
,
Adachi
,
T.
,
Yokobori
,
A. T.
, Jr.
,
Fuji
,
A.
,
Jechang
,
Ha.
, and
Yokobori
,
T.
, 2003, “
Evaluation of Creep Crack Growth Properties Using Circular Notched Specimens
,”
Int. J. Pressure Vessels Piping
0308-0161,
80
, pp.
417
425
.
32.
Sugiura
,
R.
,
Yokobori
,
A. T.
, Jr.
,
Arai
,
M.
,
Tabuchi
,
M.
, and
Fuji
,
A.
, 2006, “
Effect of Embrittlement on Creep Crack Growth Rate for W-Added 12Cr Ferritic Heat Resistant Steel Concerning Multi-Axial Stress and Aging
,”
Strength, Fracture and Complexity
,
4
, pp.
225
235
.
You do not currently have access to this content.