Creep deformation and rupture experiments are conducted on samples of the Ni-base superalloy directionally solidified GTD-111 tested at temperatures between 649°C and 982°C and two orientations (longitudinally and transversely oriented). The secondary creep constants are analytically determined from creep deformation experiments. The classical Kachanov–Rabotnov model for tertiary creep damage is implemented in a general-purpose finite element analysis (FEA) software. The simulated annealing optimization routine is utilized in conjunction with the FEA implementation to determine the creep damage constants. A comparison of FEA and creep deformation data demonstrates high accuracy. Using regression analysis, the creep constants are characterized for temperature dependence. A rupture prediction model derived from creep damage evolution is compared with rupture experiments.

1.
Daleo
,
J. A.
, and
Wilson
,
J. R.
, 1998, “
GTD111 Alloy Material Study
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
120
(
2
), pp.
375
382
.
2.
Smallman
,
R. E.
, and
Bishop
,
R. J.
, 1999,
Modern Physical Metallurgy and Materials Engineering: Science, Process, Applications
,
Butterworth-Heinemann
,
Boston, MA
.
3.
Ibanez
,
A. R.
, 2003, “
Modeling Creep Behavior in a Directionally Solidified Nickel Base Superalloy
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
4.
Li
,
L.
, 2006, “
Repair of Directionally Solidified Superalloy GTD-111 by Laser-Engineered Net Shaping
,”
J. Mater. Sci.
0022-2461,
41
(
23
), pp.
7886
7893
.
5.
Schilke
,
P. W.
, 2004,
Advanced Gas Turbine Materials and Coatings
,
GE Energy
,
Schenectady, NY
.
6.
Schilke
,
P. W.
,
Foster
,
A. D.
,
Pepe
,
J. J.
, and
Beltran
,
A. M.
, 1992, “
Advanced Materials Propel Progress in Land-Based Gas Turbines
,”
Advanced Materials and Processes
0882-7958,
141
(
4
), pp.
22
30
.
7.
Viswanathan
,
R.
, and
Scheirer
,
S. T.
, 1998, “
Materials Advances in Land-Based Gas Turbines
,”
Power-Gen 1998 Conference
, Orlando, FL, Dec. 9–11.
8.
Sajjadi
,
S. A.
, and
Nategh
,
S.
, 2001, “
A High Temperature Deformation Mechanism Map for the High Performance Ni-Base Superalloy GTD-111
,”
Mater. Sci. Eng., A
0921-5093,
307
(
1–2
), pp.
158
164
.
9.
Hale
,
J. M.
, 1994, “
Procedure Development for the Repair of GTD-111 Gas Turbine Bucket Material
,”
Eighth Congress and Exposition on Gas Turbines in Cogeneration and Utility
, Portland, OR, October, pp.
25
27
.
10.
Ibanez
,
A. R.
,
Srinivasan
,
V. S.
, and
Saxena
,
A.
, 2006, “
Creep Deformation and Rupture Behaviour of Directionally-Solidified GTD 111 Superalloy
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
29
(
12
), pp.
1010
1020
.
11.
Doi
,
M.
,
Miki
,
D.
,
Moritani
,
T.
, and
Kozakai
,
T.
, 2004, “
Gamma/Gamma-Prime Microstructure Formed by Phase Separation of Gamma-Prime Precipitates in a Ni-Al-Ti Alloy
,”
Superalloys 2004
, TMS, Sept. 19–23, pp.
109
114
.
12.
Gordon
,
A. P.
, 2006, “
Crack Initiation Modeling of a Directionally-Solidified Nickel-Base Superalloy
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
13.
ASTM E-139, “
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
,” No. 03.01, West Conshohocken, PA.
14.
Zuo
,
M.
,
Chiovelli
,
S.
, and
Nonaka
,
Y.
, 2000, “
Fitting Creep-Rupture Life Distribution Using Accelerated Life Testing Data
,”
ASME J. Pressure Vessel Technol.
0094-9930,
122
(
4
), pp.
482
487
.
15.
Hyde
,
T. H.
,
Sun
,
W.
, and
Tang
,
A.
, 1998, “
Determination of the Material Constants in Creep Continuum Damage Constitutive Equations
,”
Strain
,
34
(
3
), pp.
83
90
.
16.
Hoff
,
N. J.
, 1953, “
Necking and Rupture of Rods Subjected to Constant Tensile Loads
,”
ASME J. Appl. Mech.
0021-8936,
20
(
1
), pp.
105
108
.
17.
Hyde
,
T. H.
,
Xia
,
L.
, and
Becker
,
A. A.
, 1996, “
Prediction of Creep Failure in Aeroengine Materials Under Multiaxial Stress States
,”
Int. J. Mech. Sci.
0020-7403,
38
(
4
), pp.
385
403
.
18.
Dorn
,
J. E.
, 1955, “
Some Fundamental Experiments on High Temperature Creep
,”
J. Mech. Phys. Solids
0022-5096,
3
, pp.
85
116
.
19.
Jeong
,
C. Y.
,
Nam
,
S. W.
, and
Ginsztler
,
J.
, 1999, “
Stress Dependence on Stress Relaxation Creep Rate During Tensile Holding Under Creep-Fatigue Interaction in 1Cr-Mo-V Steel
,”
J. Mater. Sci.
0022-2461,
34
(
11
), pp.
2513
2517
.
20.
Stewart
,
C. M.
, and
Gordon
,
A. P.
, 2009, “
Modeling the Temperature Dependence of Tertiary Creep Damage of a Ni-Based Alloy
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
(
5
), p.
051406
.
21.
McGaw
,
M. A.
, 1993, “
Cumulative Damage Concepts in Thermomechanical Fatigue
,”
Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186
,
H.
Sehitoglu
, ed.,
American Society of Testing and Materials
,
Philadelphia, PA
, pp.
144
156
.
22.
Kachanov
,
L. M.
, 1967,
The Theory of Creep
,
National Lending Library for Science and Technology
,
Boston Spa, UK
.
23.
Rabotnov
,
Y. N.
, 1969,
Creep Problems in Structural Members
,
North-Holland
,
Amsterdam
.
24.
Johnson
,
A. E.
,
Henderson
,
J.
, and
Khan
,
B.
, 1962,
Complex-Stress Creep, Relaxation and Fracture of Metallic Alloys
,
HMSO
,
UK
.
25.
Hayhurst
,
D. R.
, 1983, “
On the Role of Continuum Damage on Structural Mechanics
,”
Engineering Approaches to High Temperature Design
,
B.
Wilshire
and
D. R.
Owen
, eds.,
Pineridge
,
Swansea
, pp.
85
176
.
26.
Murakami
,
S.
, and
Ohno
,
N.
, 1981, “
A Continuum Theory of Creep and Creep Damage
,”
Creep in Structures
,
A. R. S.
Ponter
and
D. R.
Hayhurst
, eds., pp.
422
443
.
27.
Stewart
,
C. M.
,
Gordon
,
A. P.
, and
Nicholson
,
D. W.
, 2009, “
Numerical Simulation of Temperature-Dependent, Anisotropic Tertiary Creep Damage
,”
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, Orlando, FL, Jan. 5–8.
28.
MacLachlan
,
D. W.
, and
Knowles
,
D. M.
, 2000, “
Creep-Behavior Modeling of the Single-Crystal Superalloy CMSX-4
,”
Metall. Mater. Trans. A
1073-5623,
31
(
5
), pp.
1401
1411
.
29.
Kouhia
,
R.
,
Marjamaki
,
P.
, and
Kivilahti
,
J.
, 2005, “
On the Implicit Integration of Rate-Dependent Inelastic Constitutive Models
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
13
), pp.
1832
1856
.
30.
Hogan
,
E. A.
, 2009, “
An Efficient Method for the Optimization of Viscoplastic Constitutive Model Constants
,” Honors in the Major Undergraduate thesis, University of Central Florida, Orlando, FL.
31.
Corana
,
A.
,
Marchesi
,
M.
,
Martini
,
C.
, and
Ridella
,
S.
, 1987, “
Minimizing Multimodal Functions of Continuous Variables With the ‘Simulated Annealing’ Algorithm
,”
ACM Trans. Math. Softw.
0098-3500,
13
(
3
), pp.
262
280
.
32.
Goffe
,
W. L.
,
Gary
,
D. F.
, and
Rogers
,
J.
, 1993, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econometr.
0304-4076,
60
(
1/2
), pp.
65
100
.
You do not currently have access to this content.