In this study, a hierarchical multiscale homogenization procedure aimed at predicting the effective mechanical properties of silica/epoxy nanocomposites is presented. First, the mechanical properties of the amorphous silica nanoparticles are investigated by means of molecular dynamics (MD) simulations. At this stage, the MD modeling of three-axial tensile loading of amorphous silica is carried out to estimate the elastic properties. Second, the conventional twp phase homogenization techniques such as finite elements (FE), Mori-Tanaka (M-T), Voigt and Reuss methods are implemented to evaluate the overall mechanical properties of the silica/epoxy nanocomposite at different temperatures and at constant weight ratio of 5%. At this point, the mechanical properties of silica obtained in the first stage are used as the inputs of the reinforcing phase. Comparison of the FE and M-T results with the experimental results in a wide range of temperatures reveals fine agreement; however, the FE results are in better agreement with the experiments than those obtained by M-T approach. Additionally, the results predicted by FE and M-T methods are closer to the lower bound (Reuss), which is due to lowest surface to volume ratio of spherical particles.
Skip Nav Destination
e-mail: ahzi@unistra.fr
Article navigation
January 2012
Bridging Microstructure, Properties, And Processing Of Polymer-Based Advanced Materials
Atomistic-Continuum Modeling of the Mechanical Properties of Silica/Epoxy Nanocomposite
Bohayra Mortazavi,
Bohayra Mortazavi
Centre de Recherche Public Henri Tudor
, Department of Advanced Materials and Structures, 66, rue de Luxembourg BP 144, L-4002 Esch/Alzette, Luxembourg; Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
Search for other works by this author on:
Julien Bardon,
Julien Bardon
Centre de Recherche Public Henri Tudor
, Department of Advanced Materials and Structures, 66, rue de Luxembourg BP 144, L-4002 Esch/Alzette, Luxembourg
Search for other works by this author on:
Said Ahzi,
e-mail: ahzi@unistra.fr
Said Ahzi
Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
Search for other works by this author on:
Akbar Ghazavizadeh,
Akbar Ghazavizadeh
Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
Search for other works by this author on:
Yves Rémond,
Yves Rémond
Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
Search for other works by this author on:
David Ruch
David Ruch
Centre de Recherche Public Henri Tudor
, Department of Advanced Materials and Structures, 66, rue de Luxembourg BP 144, L-4002 Esch/Alzette, Luxembourg
Search for other works by this author on:
Bohayra Mortazavi
Centre de Recherche Public Henri Tudor
, Department of Advanced Materials and Structures, 66, rue de Luxembourg BP 144, L-4002 Esch/Alzette, Luxembourg; Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
Julien Bardon
Centre de Recherche Public Henri Tudor
, Department of Advanced Materials and Structures, 66, rue de Luxembourg BP 144, L-4002 Esch/Alzette, Luxembourg
Said Ahzi
Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
e-mail: ahzi@unistra.fr
Akbar Ghazavizadeh
Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
Yves Rémond
Institut de Mécanique des Fluides et des Solides, University of Strasbourg/CNRS
, 2 Rue Boussingault, 67000 Strasbourg, France
David Ruch
Centre de Recherche Public Henri Tudor
, Department of Advanced Materials and Structures, 66, rue de Luxembourg BP 144, L-4002 Esch/Alzette, LuxembourgJ. Eng. Mater. Technol. Jan 2012, 134(1): 010904 (6 pages)
Published Online: December 12, 2011
Article history
Received:
June 13, 2011
Revised:
September 23, 2011
Accepted:
October 25, 2011
Online:
December 12, 2011
Published:
December 12, 2011
Citation
Mortazavi, B., Bardon, J., Ahzi, S., Ghazavizadeh, A., Rémond, Y., and Ruch, D. (December 12, 2011). "Atomistic-Continuum Modeling of the Mechanical Properties of Silica/Epoxy Nanocomposite." ASME. J. Eng. Mater. Technol. January 2012; 134(1): 010904. https://doi.org/10.1115/1.4005419
Download citation file:
Get Email Alerts
Cited By
Evaluation of Machine Learning Models for Predicting the Hot Deformation Flow Stress of Sintered Al–Zn–Mg Alloy
J. Eng. Mater. Technol (April 2025)
Blast Mitigation Using Monolithic Closed-Cell Aluminum Foam
J. Eng. Mater. Technol (April 2025)
Irradiation Damage Evolution Dependence on Misorientation Angle for Σ 5 Grain Boundary of Nb: An Atomistic Simulation-Based Study
J. Eng. Mater. Technol (July 2025)
Related Articles
A Hybrid Numerical-Analytical Method for Modeling the Viscoelastic Properties of Polymer Nanocomposites
J. Appl. Mech (September,2006)
Enhancing Uniform, Nonuniform, and Total Failure Strain of Aluminum by Using SiC at Nanolength Scale
J. Eng. Mater. Technol (October,2010)
Mechanical Properties and Microstructure of Mg ∕ Si C Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
J. Manuf. Sci. Eng (June,2008)
Tensile Performance of Fused Deposition Modeling PA 6 Polymer Composites With Nanoparticle Reinforcement and/or Continuous Fiber Reinforcement
J. Micro Nano-Manuf (December,2019)
Related Proceedings Papers
Related Chapters
Modeling Grain Boundary Scattering in Nanocomposites
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Characterization of Ultra-High Temperature and Polymorphic Ceramics
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation