Thermal–mechanical constitutive relations for bulk, single-crystal, wurtzite gallium nitride (GaN) at elevated temperatures, suitable for modeling crystal growth processes, are presented. A crystal plasticity model that considers slip and the evolution of mobile and immobile dislocation densities on the prismatic and basal slip systems is developed. The experimental stress–strain data from Yonenaga and Motoki (2001, “Yield Strength and Dislocation Mobility in Plastically Deformed Bulk Single-Crystal GaN,” J. Appl. Phys., 90(12), pp. 6539–6541) for GaN is analyzed in detail and used to define model parameters for prismatic slip. The sensitivity to the model parameters is discussed and ranges for parameters are given. Estimates for basal slip are also provided.

References

1.
Strite
,
S.
, and
Morkoc
,
H.
,
1992
, “
GaN, AlN, and InN: A Review
,”
J. Vac. Sci. Technol. B
,
10
(
4
), pp.
1237
1266
.10.1116/1.585897
2.
Nakamura
,
S.
,
1997
, “
First III-V-Nitride-Based Violet Laser Diodes
,”
J. Cryst. Growth
,
170
(
1-4
), pp.
11
15
.10.1016/S0022-0248(96)00503-9
3.
Wang
,
J.
,
Ryu
,
H.-B.
,
Park
,
M.-S.
,
Lee
,
W.-J.
,
Choi
,
Y.-J.
, and
Lee
,
H.-Y.
,
2013
, “
Epitaxy of GaN on Si(111) Substrate by the Hydride Vapor Phase Epitaxy Method
,”
J. Cryst. Growth
,
370
, pp.
249
253
.10.1016/j.jcrysgro.2012.08.040
4.
Motoki
,
K.
,
Okahisa
,
T.
,
Nakahata
,
S.
,
Matsumoto
,
N.
,
Kimura
,
H.
,
Kasai
,
H.
,
Takemoto
,
K.
,
Uematsu
,
K.
,
Ueno
,
M.
,
Kumagai
,
Y.
,
Koukitu
,
A.
, and
Seki
,
H.
,
2002
, “
Growth and Characterization of Freestanding GaN Substrates
,”
J. Cryst. Growth
,
237
(
2
), pp.
912
921
.10.1016/S0022-0248(01)02078-4
5.
Andre
,
Y.
,
Trassoudaine
,
A.
,
Tourret
,
J.
,
Cadoret
,
R.
,
Gil
,
E.
,
Castelluci
,
D.
,
Aoude
,
O.
, and
Disseix
,
P.
,
2007
, “
Low Dislocation Density High-Quality Thick Hydride Vapour Phase Epitaxy (HVPE) GaN Layers
,”
J. Cryst. Growth
,
306
(
1
), pp.
86
93
.10.1016/j.jcrysgro.2006.12.081
6.
Yoshikawa
,
A.
,
Ohshima
,
E.
,
Fukuda
,
T.
,
Tsuji
,
H.
, and
Oshima
,
K.
,
2004
, “
Crystal Growth of GaN by Ammonothermal Method
,”
J. Cryst. Growth
,
260
(
1
), pp.
67
72
.10.1016/j.jcrysgro.2003.08.031
7.
Dwiliński
,
R.
,
Doradziński
,
R.
,
Garczyński
,
J.
,
Sierzputowski
,
L.
,
Puchalski
,
A.
,
Kanbara
,
Y.
,
Yagi
,
K.
,
Minakuchi
,
H.
, and
Hayashi
,
H.
,
2008
, “
Excellent Crystallinity of Truly Bulk Ammonothermal GaN
,”
J. Cryst. Growth
,
310
(
17
), pp.
3911
3916
.10.1016/j.jcrysgro.2008.06.036
8.
Dwiliński
,
R.
,
Doradziński
,
R.
,
Garczyński
,
J.
,
Sierzputowski
,
L.
,
Kucharski
,
R.
,
Zajac
,
M.
,
Rudziński
,
M.
,
Kudrawiec
,
R.
,
Strupiński
,
W.
, and
Misiewicz
,
J.
,
2011
, “
Ammonothermal GaN Substrates: Growth Accomplishments and Applications
,”
Phys. Status Solidi
,
208
(
7
), pp.
1489
1493
.10.1002/pssa.201001196
9.
Yonenaga
,
I.
, and
Motoki
,
K.
,
2001
, “
Yield Strength and Dislocation Mobility in Plastically Deformed Bulk Single-Crystal GaN
,”
J. Appl. Phys.
,
90
(
12
), pp.
6539
6541
.10.1063/1.1415754
10.
Leszczynski
,
M.
,
Suski
,
T.
,
Teisseyre
,
H.
,
Perlin
,
P.
,
Grzegory
,
I.
,
Jun
,
J.
,
Porowski
,
S.
, and
Moustakas
,
T. D.
,
1994
, “
Thermal Expansion of Gallium Nitride
,”
J. Appl. Phys.
,
76
(
8
), pp.
4909
4911
.10.1063/1.357273
11.
Reeber
,
R. R.
, and
Wang
,
K.
,
2000
, “
Lattice Parameters and Thermal Expansion of Important Semiconductors and Their Substrates
,”
MRS Proc.
,
622
(1), p. T6.35.1.10.1557/PROC-622-T6.35.1
12.
Wang
,
H.-Y.
,
Hui
,
X.
,
Huang
,
T.-T.
, and
Deng
,
C.-S.
,
2008
, “
Thermodynamics of Wurtzite GaN From First-Principle Calculation
,”
Eur. Phys. J. B
,
62
(
1
), pp.
39
43
.10.1140/epjb/e2008-00121-2
13.
Yadav
,
R. R.
, and
Pandey
,
D. K.
,
2006
, “
Ultrasonic Characterisation of Gallium Nitride
,”
Mater. Res. Innov.
,
10
(
4
), pp.
402
407
.10.1179/143307507X199371
14.
Reeber
,
R. R.
, and
Wang
,
K.
,
2001
, “
High Temperature Elastic Constant Prediction of Some Group III-Nitrides
,”
MRS Internet J. Nitride Semicond. Res.
,
6
, p. e3.10.1557/S1092578300000156
15.
Fujikane
,
M.
,
Yokogawa
,
T.
,
Nagao
,
S.
, and
Nowak
,
R.
,
2012
, “
Nanoindentation Study on Insight of Plasticity Related to Dislocation Density and Crystal Orientation in GaN
,”
Appl. Phys. Lett.
,
101
(
20
), p.
201901
. 10.1063/1.4767372
16.
Lu
,
J.-Y.
,
Ren
,
H.
,
Deng
,
D.-M.
,
Wang
,
Y.
,
Chen
,
K. J.
,
Lau
,
K.-M.
, and
Zhang
,
T.-Y.
,
2012
, “
Thermally Activated Pop-In and Indentation Size Effects in GaN Films
,”
J. Phys. D
,
45
(
8
), p.
085301
.10.1088/0022-3727/45/8/085301
17.
Yonenaga
,
I.
,
Hoshi
,
T.
, and
Usui
,
A.
,
2000
, “
Hardness of Bulk Single-Crystal Gallium Nitride at High Temperatures
,”
Jpn. J. Appl. Phys.
,
39
(
3A/B
), pp.
L200
L201
. 10.1143/JJAP.39.L200
18.
Lloyd
,
S. J.
,
Molina-Aldareguia
,
J. M.
, and
Clegg
,
W. J.
,
2001
, “
Deformation Under Nanoindents in Si, Ge, and GaAs Examined Through Transmission Electron Microscopy
,”
J. Mater. Res.
,
16
(
12
), pp.
3347
3350
. 10.1557/JMR.2001.0461
19.
Wheeler
,
J. M.
,
Niederberger
,
C.
,
Tessarek
,
C.
,
Christiansen
,
S.
, and
Michler
,
J.
,
2013
, “
Extraction of Plasticity Parameters of GaN With High Temperature, In Situ Micro-Compression
,”
Int. J. Plast.
,
40
, pp.
140
151
. 10.1016/j.ijplas.2012.08.001
20.
Alexander
,
H.
, and
Haasen
,
P.
,
1968
, “
Dislocations in the Diamond Structure
,”
Advances in Solid State Physics
, Vol. 22,
F.
Sietz
,
D.
Turnbull
, and
H.
Ehrenreich
, eds., Academic Press, New York, pp.
27
158
.
21.
Yonenaga
,
I.
, and
Sumino
,
K.
,
1978
, “
Dislocation Dynamics in the Plastic Deformation of Silicon Crystals
,”
Phys. Status Solidi A
,
50
(
2
), pp.
685
693
. 10.1002/pssa.2210500239
22.
Yonenaga
,
I.
,
1997
, “
Mechanical Properties and Dislocation Dynamics in III-V Compounds
,”
Journal de Physique III
,
7
(
7
), pp.
1435
1450
. 10.1051/jp3:1997198
23.
Garofalo
,
F.
,
1963
.,“
Empirical Relation Defining Stress Dependence of Minimum Creep Rate in Metals
,”
Metall. Soc. AIME
,
227
(2), pp.
351
356
.
24.
Moosbrugger
,
J. C.
,
1995
, “
Continuum Slip Viscoplasticity With the Haasen Constitutive Model: Application to CdTe Single Crystal Inelasticity
,”
Int. J. Plast.
,
11
(
7
), pp.
799
826
.10.1016/S0749-6419(99)80004-7
25.
Kalan
,
R. J.
, and
Maniatty
,
A. M.
,
2001
, “
Micromechanical Constitutive Relations for Modeling the Bulk Growth of Single Crystal InP
,”
J. Cryst. Growth
,
233
(
4
), pp.
645
659
. 10.1016/S0022-0248(01)01624-4
26.
Cochard
,
J.
,
Yonenaga
,
I.
,
Gouttebroze
,
S.
,
M'Hamdi
,
M.
, and
Zhang
,
Z. L.
,
2010
, “
Constitutive Modeling of Intrinsic Silicon Monocrystals in Easy Glide
,”
J. Appl. Phys.
,
107
(
3
), p.
033512
. 10.1063/1.3284082
27.
Bower
,
A. F.
,
2010
,
Applied Mechanics of Solids
,
CRC Press
, Boca Raton, FL.
28.
Orowan
,
E.
,
1940
, “
Problems of Plastic Gliding
,”
Proc. Phys. Soc. London
,
52
(
1
), pp. 8–22. 10.1088/0959-5309/52/1/303
29.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation-Mechanism Maps
,
Pergamon Press
, New York.
30.
Utsumi
,
W.
,
Saitoh
,
H.
,
Kaneko
,
H.
,
Watanuki
,
T.
,
Aoki
,
K.
, and
Shimomura
,
O.
,
2003
, “
Congruent Melting of Gallium Nitride at 6 GPa and Its Application to Single-Crystal Growth
,”
Nat. Mater.
,
2
(11), pp.
735
738
. 10.1038/nmat1003
31.
Maniatty
,
A. M.
,
Dawson
,
P. R.
, and
Lee
,
Y. S.
,
1992
, “
A Time Integration Algorithm for Elasto-Viscoplastic Cubic Crystals Applied to Modeling Polycrystalline Deformation
,”
Int. J. Numer. Methods Eng.
,
35
(
8
), pp.
1565
1588
. 10.1002/nme.1620350803
32.
Hutchinson
,
J. W.
,
1976
, “
Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. R. Soc. A
,
348
(
1652
), pp.
101
127
. 10.1098/rspa.1976.0027
33.
Johnston
,
W. G.
, and
Gilman
,
J. J.
,
1959
, “
Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals
,”
J. Appl. Phys.
,
30
(
2
), pp.
129
143
. 10.1063/1.1735121
34.
Dew-Hughes
,
D.
,
1961
, “
Dislocations and Plastic Flow in Germanium
,”
IBM J. Res. Dev.
,
5
(
4
), pp.
279
286
. 10.1147/rd.54.0279
35.
Peissker
,
E.
,
Haasen
,
P.
, and
Alexander
,
H.
,
1962
, “
Anisotropic Plastic Deformation of Indium Antimonide
,”
Philos. Mag.
,
7
(
80
), pp.
1279
1303
. 10.1080/14786436208213163
36.
Kubin
,
L. P.
, and
Estrin
,
Y.
,
1990
, “
Evolution for Dislocation Densities and the Critical Conditions for the Portevin–Le Chatelier Effect
,”
Acta Metall. Mater.
,
38
(
5
), pp.
697
708
. 10.1016/0956-7151(90)90021-8
37.
Huang
,
J.
,
Xu
,
K.
,
Gong
,
X. J.
,
Wang
,
J. F.
,
Fan
,
Y. M.
,
Liu
,
J. Q.
,
Zeng
,
X. H.
,
Ren
,
G. Q.
,
Zhou
,
T. F.
, and
Yang
,
H.
,
2011
, “
Dislocation Cross-Slip in GaN Single Crystals Under Nanoindentation
,”
Appl. Phys. Lett.
,
98
(
22
), p.
221906
. 10.1063/1.3593381
38.
Weingarten
,
N. S.
, and
Chung
,
P. W.
,
2013
, “
A-Type Edge Dislocation Mobility in Wurtzite GaN Using Molecular Dynamics
,”
Scr. Mater.
,
69
(
4
), pp.
311
314
. 10.1016/j.scriptamat.2013.05.005
39.
Dasilva
,
Y. A. R.
,
Ruterana
,
P.
,
Lahourcade
,
L.
,
Monroy
,
E.
, and
Nataf
,
G.
,
2010
, “
Extended Crystallographic Defects in Gallium Nitride
,”
Mater. Sci. Forum
,
644
, pp.
117
122
.10.4028/www.scientific.net/MSF.644.117
40.
Bai
,
J.
,
Dudley
,
M.
,
Raghothamachar
,
B.
,
Gouma
,
P.
,
Skromme
,
B. J.
,
Chen
,
L.
,
Hartlieb
,
P. J.
,
Michaels
,
E.
, and
Kolis
,
J. W.
,
2004
, “
Correlated Structural and Optical Characterization of Ammonothermally Grown Bulk GaN
,”
Appl. Phys. Lett.
,
84
(
17
), pp.
3289
3291
. 10.1063/1.1715154
41.
Beyerlein
,
I. J.
, and
Tomé
,
C. N.
,
2008
, “
A Dislocation-Based Constitutive Law for Pure Zr Including Temperature Effects
,”
Int. J. Plast.
,
24
(
5
), pp.
867
895
. 10.1016/j.ijplas.2007.07.017
42.
Hosford
,
W. F.
,
1993
,
The Mechanics of Crystals and Textured Polycrystals
,
Oxford University Press
,
New York
.
43.
Patel
,
J. R.
, and
Chaudhuri
,
A. R.
,
1963
, “
Macroscopic Plastic Properties of Dislocation-Free Germanium and Other Semiconductor Crystals. I. Yield Behavior
,”
J. Appl. Phys.
,
34
(
9
), p.
2788
. 10.1063/1.1729812
44.
Yonenaga
,
I.
, and
Sumino
,
K.
,
1993
, “
Effects of Dopants on Dynamic Behavior of Dislocations and Mechanical Strength in InP
,”
J. Appl. Phys.
,
74
(
2
), pp.
917
924
. 10.1063/1.354859
45.
Reppich
,
B.
,
Reiger
,
K.
, and
Muller
,
G.
,
1990
, “
Dynamische Verformung von InP-Einkristallen Bei Hochsten Temperaturen Mittels Liquid-Encapsulation (LE)-Technik
,”
Z. Metallkd.
,
81
, pp.
166
173
.
46.
Samant
,
A. V.
,
Zhou
,
W. L.
, and
Pirouz
,
P.
,
1998
, “
Effect of Test Temperature and Strain Rate on the Yield Stress of Monocrystalline 6H-SiC
,”
Phys. Status Solidi A
,
166
(
1
), pp.
155
169
. 10.1002/(SICI)1521-396X(199803)166:1<155::AID-PSSA155>3.0.CO;2-V
47.
Anderssen
,
R.
, and
Hegland
,
M.
,
1999
, “
For Numerical Differentiation, Dimensionality Can Be a Blessing!
Math. Comput.
,
68
(
227
), pp.
1121
1142
. 10.1090/S0025-5718-99-01033-9
48.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer
, New York.
You do not currently have access to this content.