The thermodynamically consistent framework accounting for the thermomechanical behavior of the microstructure is addressed using the finite-element implementation. In particular, two different classes of the strain gradient plasticity (SGP) theories are proposed: In the first theory, the dissipation potential is dependent on the gradient of the plastic strain, as a result, the nonrecoverable microstresses do not have a value of zero. In the second theory, the dissipation potential is independent of the gradient of the plastic strain, in which the nonrecoverable microstresses do not exist. Recently, Fleck et al. pointed out that the nonrecoverable microstresses always generate the stress jump phenomenon under the nonproportional loading condition. In this work, a one-dimensional finite-element solution for the proposed strain gradient plasticity model is developed for investigating the stress jump phenomenon. The proposed strain gradient plasticity model and the corresponding finite-element code are validated by comparing with the experimental data from the two sets of microscale thin film experiments. In both experimental validations, it is shown that the calculated numerical results of the proposed model are in good agreement with the experimental measurements. The stretch-passivation problems are then numerically solved for investigating the stress jump phenomenon under the nonproportional loading condition.

References

1.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity—Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
2.
Voyiadjis
,
G. Z.
, and
Peters
,
R.
,
2010
, “
Size Effects in Nanoindentation: An Experimental and Analytical Study
,”
Acta Mech.
,
211
(
1–2
), pp.
131
153
.
3.
Xiang
,
Y.
,
Chen
,
X.
, and
Vlassak
,
J. J.
,
2005
, “
Plane-Strain Bulge Test for Thin Films
,”
J. Mater. Res.
,
20
(
9
), pp.
2360
2370
.
4.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
5.
Gurtin
,
M. E.
,
2002
, “
A Gradient Theory of Single-Crystal Viscoplasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
50
(
1
), pp.
5
32
.
6.
Voyiadjis
,
G. Z.
,
Pekmezi
,
G.
, and
Deliktas
,
B.
,
2010
, “
Nonlocal Gradient-Dependent Modeling of Plasticity With Anisotropic Hardening
,”
Int. J. Plast.
,
26
(
9
), pp.
1335
1356
.
7.
Xiang
,
Y.
, and
Vlassak
,
J. J.
,
2005
, “
Bauschinger Effect in Thin Metal Films
,”
Scr. Mater.
,
53
(
2
), pp.
177
182
.
8.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.
9.
Ziegler
,
H.
, and
Wehrli
,
C.
,
1987
, “
The Derivation of Constitutive Relations From the Free-Energy and the Dissipation Function
,”
Adv. Appl. Mech.
,
25
, pp.
183
238
.
10.
Gurtin
,
M. E.
,
2003
, “
On a Framework for Small-Deformation Viscoplasticity: Free Energy, Microforces, Strain Gradients
,”
Int. J. Plast.
,
19
(
1
), pp.
47
90
.
11.
Gurtin
,
M. E.
,
2004
, “
A Gradient Theory of Small-Deformation Isotropic Plasticity That Accounts for the Burgers Vector and for Dissipation Due to Plastic Spin
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2545
2568
.
12.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials—Part I: Small Deformations
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1624
1649
.
13.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2009
, “
Thermodynamics Applied to Gradient Theories Involving the Accumulated Plastic Strain: The Theories of Aifantis and Fleck and Hutchinson and Their Generalization
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
405
421
.
14.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.
15.
Gudmundson
,
P.
,
2004
, “
A Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1379
1406
.
16.
Hutchinson
,
J. W.
,
2012
, “
Generalizing J(2) Flow Theory: Fundamental Issues in Strain Gradient Plasticity
,”
Acta Mech. Sin.
,
28
(
4
), pp.
1078
1086
.
17.
Fleck
,
N. A.
,
Hutchinson
,
J. W.
, and
Willis
,
J. R.
,
2014
, “
Strain Gradient Plasticity Under Non-Proportional Loading
,”
Proc. R. Soc. A
,
470
(
2170
), pp.
1
22
.
18.
Fleck
,
N. A.
,
Hutchinson
,
J. W.
, and
Willis
,
J. R.
,
2015
, “
Guidelines for Constructing Strain Gradient Plasticity Theories
,”
ASME J. Appl. Mech.
,
82
(
7
), pp.
071002
071002-10
.
19.
Xiang
,
Y.
, and
Vlassak
,
J. J.
,
2006
, “
Bauschinger and Size Effects in Thin-Film Plasticity
,”
Acta Mater.
,
54
(
20
), pp.
5449
5460
.
20.
Gurtin
,
M. E.
, and
Reddy
,
B. D.
,
2009
, “
Alternative Formulations of Isotropic Hardening for Mises Materials, and Associated Variational Inequalities
,”
Continuum Mech. Thermodyn.
,
21
(
3
), pp.
237
250
.
21.
Anand
,
L.
,
Gurtin
,
M. E.
,
Lele
,
S. P.
, and
Gething
,
C.
,
2005
, “
A One-Dimensional Theory of Strain-Gradient Plasticity: Formulation, Analysis, Numerical Results
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1789
1826
.
22.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2005
, “
Size-Dependent Yield Strength and Surface Energies of Thin Films
,”
Mater. Sci. Eng. A
,
400–401
, pp.
448
450
.
23.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2007
, “
Modelling of the Interface Between a Thin Film and a Substrate Within a Strain Gradient Plasticity Framework
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
939
955
.
24.
Gurtin
,
M. E.
,
Anand
,
L.
, and
Lele
,
S. P.
,
2007
, “
Gradient Single-Crystal Plasticity With Free Energy Dependent on Dislocation Densities
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1853
1878
.
25.
Lele
,
S. P.
, and
Anand
,
L.
,
2008
, “
A Small-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Philos. Mag.
,
88
(
30–32
), pp.
3655
3689
.
26.
Lele
,
S. P.
, and
Anand
,
L.
,
2009
, “
A Large-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Int. J. Plast.
,
25
(
3
), pp.
420
453
.
27.
Niordson
,
C. F.
, and
Hutchinson
,
J. W.
,
2003
, “
Non-Uniform Plastic Deformation of Micron Scale Objects
,”
Int. J. Numer. Methods Eng.
,
56
(
7
), pp.
961
975
.
28.
Voyiadjis
,
G. Z.
,
Al-Rub
,
R. K. A.
, and
Palazotto
,
A. N.
,
2004
, “
Thermodynamic Framework for Coupling of Non-Local Viscoplasticity and Non-Local Anisotropic Viscodamage for Dynamic Localization Problems Using Gradient Theory
,”
Int. J. Plast.
,
20
(
6
), pp.
981
1038
.
29.
Han
,
S.
,
Kim
,
T.
,
Lee
,
H.
, and
Lee
,
H.
,
2008
, “
Temperature-Dependent Behavior of Thin Film by Microtensile Testing
,”
2nd Electronics System-Integration Technology Conference
(
ESTC
), London, Sept. 1–4, pp.
477
480
.
30.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2014
, “
Overview of Enhanced Continuum Theories for Thermal and Mechanical Responses of the Microsystems in the Fast-Transient Process
,”
ASME J. Eng. Mater. Technol.
,
136
(
4
), p.
041003
.
31.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), p.
597
.
32.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2013
, “
Gradient Plasticity for Thermo-Mechanical Processes in Metals With Length and Time Scales
,”
Philos. Mag.
,
93
(
9
), pp.
1013
1053
.
33.
Faghihi
,
D.
, and
Voyiadjis
,
G. Z.
,
2014
, “
A Thermodynamic Consistent Model for Coupled Strain-Gradient Plasticity With Temperature
,”
ASME J. Eng. Mater. Technol.
,
136
(
1
), p.
011002
.
34.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
Thermo-Mechanical Strain Gradient Plasticity With Energetic and Dissipative Length Scales
,”
Int. J. Plast.
,
30–31
, pp.
218
247
.
35.
Cermelli
,
P.
, and
Gurtin
,
M. E.
,
2002
, “
Geometrically Necessary Dislocations in Viscoplastic Single Crystals and Bicrystals Undergoing Small Deformations
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6281
6309
.
36.
Gurtin
,
M. E.
,
2008
, “
A Theory of Grain Boundaries That Accounts Automatically for Grain Misorientation and Grain-Boundary Orientation
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
640
662
.
37.
ABAQUS
,
2012
, “
User's Manual (Version 6.12)
,” Dassault Systemes Simulia, Providence, RI.
You do not currently have access to this content.