This paper recounts recent advances on the atomistic modeling of twinning in body-centered cubic (bcc) and face-centered cubic (fcc) alloy. Specifically, we have reviewed: (i) the experimental evidence of twinning-dominated deformation in single- and multi-grain microstructures, (ii) calculation of generalized planar fault energy (GPFE) landscapes, and (iii) the prediction of critical friction stresses to initiate twinning-governed plasticity (e.g., twin nucleation, twin–slip and twin–twin interactions). Possible avenues for further research are outlined.
References
1.
Tucker
, G. J.
, and Foiles
, S. M.
, 2015
, “Quantifying the Influence of Twin Boundaries on the Deformation of Nanocrystalline Copper Using Atomistic Simulations
,” Int. J. Plast.
, 65
, pp. 191
–205
.2.
Li
, J.
, Ngan
, A. H.
, and Gumbsch
, P.
, 2003
, “Atomistic Modeling of Mechanical Behavior
,” Acta Mater.
, 51
(19
), pp. 5711
–5742
.3.
Ogata
, S.
, Li
, J.
, and Yip
, S.
, 2005
, “Energy Landscape of Deformation Twinning in Bcc and Fcc Metals
,” Phys. Rev. B
, 71
(22
), p. 224102
.4.
Ogata
, S.
, Li
, J.
, and Yip
, S.
, 2002
, “Ideal Pure Shear Strength of Aluminum and Copper
,” Science
, 298
(5594
), pp. 807
–811
.5.
Jin
, Z. H.
, Dunham
, S. T.
, Gleiter
, H.
, Hahn
, H.
, and Gumbsch
, P.
, 2011
, “A Universal Scaling of Planar Fault Energy Barriers in Face-Centered Cubic Metals
,” Scr. Mater.
, 64
(7
), pp. 605
–608
.6.
Chowdhury
, P.
, and Sehitoglu
, H.
, 2016
, “Mechanisms of Fatigue Crack Growth—A Critical Digest of Theoretical Developments
,” Fatigue Fract. Eng. Mater. Struct.
, 39
(6
), pp. 652
–674
.http://onlinelibrary.wiley.com/doi/10.1111/ffe.12392/abstract7.
Remy
, L.
, 1977
, “Twin-Twin Interaction in FCC Crystals
,” Scr. Metall.
, 11
(3
), pp. 169
–172
.8.
Remy
, L.
, 1978
, “Kinetics of Fcc Deformation Twinning and Its Relationship to Stress-Strain Behaviour
,” Acta Metall.
, 26
(3
), pp. 443
–451
.9.
McPhie
, M.
, Berbenni
, S.
, and Cherkaoui
, M.
, 2012
, “Activation Energy for Nucleation of Partial Dislocation From Grain Boundaries
,” Comput. Mater. Sci.
, 62
, pp. 169
–174
.10.
Warner
, D. H.
, Sansoz
, F.
, and Molinari
, J. F.
, 2006
, “Atomistic Based Continuum Investigation of Plastic Deformation in Nanocrystalline Copper
,” Int. J. Plast.
, 22
(4
), pp. 754
–774
.11.
M'Guil
, S.
, Wen
, W.
, Ahzi
, S.
, Gracio
, J. J.
, and Davies
, R. W.
, 2015
, “Analysis of Shear Deformation by Slip and Twinning in Low and High/Medium Stacking Fault Energy Fcc Metals Using the ϕ-Model
,” Int. J. Plast.
, 68
, pp. 132
–149
.12.
Sun
, C. Y.
, Guo
, N.
, Fu
, M. W.
, and Wang
, S. W.
, 2016
, “Modeling of Slip, Twinning and Transformation Induced Plastic Deformation for TWIP Steel Based on Crystal Plasticity
,” Int. J. Plast.
, 76
, pp. 186
–212
.13.
Müllner
, P.
, and Romanov
, A.
, 2000
, “Internal Twinning in Deformation Twinning
,” Acta Mater.
, 48
(9
), pp. 2323
–2337
.14.
Tadmor
, E. B.
, and Miller
, R. E.
, 2011
, Modeling Materials: Continuum, Atomistic and Multiscale Techniques
, Cambridge University Press
, Cambridge, UK
.15.
Jo
, M.
, Koo
, Y. M.
, Lee
, B.-J.
, Johansson
, B.
, Vitos
, L.
, and Kwon
, S. K.
, 2014
, “Theory for Plasticity of Face-Centered Cubic Metals
,” Proc. Natl. Acad. Sci.
, 111
(18
), pp. 6560
–6565
.16.
Li
, W.
, Lu
, S.
, Hu
, Q.-M.
, Kwon
, S. K.
, Johansson
, B.
, and Vitos
, L.
, 2014
, “Generalized Stacking Fault Energies of Alloys
,” J. Phys.: Condens. Matter
, 26
(26
), p. 265005
.17.
Lebensohn
, R.
, and Tomé
, C.
, 1993
, “A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,” Acta Metall. Mater.
, 41
(9
), pp. 2611
–2624
.18.
Chowdhury
, P. B.
, 2016
, “Modeling Mechanical Properties–Linking Atomistics to Continuum,” Ph.D. thesis
, University of Illinois at Urbana-Champaign, Urbana, IL.https://www.ideals.illinois.edu/handle/2142/9047419.
Remy
, L.
, 1981
, “The Interaction Between Slip and Twinning Systems and the Influence of Twinning on the Mechanical Behavior of Fcc Metals and Alloys
,” Metall. Trans. A
, 12
(3
), pp. 387
–408
.20.
Wang
, J.
, Anderoglu
, O.
, Hirth
, J. P.
, Misra
, A.
, and Zhang
, X.
, 2009
, “Dislocation Structures of Σ3 {112} Twin Boundaries in Face Centered Cubic Metals
,” Appl. Phys. Lett.
, 95
(2
), p. 021908
.21.
Sutton
, A. P.
, and Balluffi
, R. W.
, 1995
, “Interfaces in Crystalline Materials,” Phys. Today
, 49
(9
), p. 88
.22.
Kacher
, J.
, Eftink
, B.
, Cui
, B.
, and Robertson
, I.
, 2014
, “Dislocation Interactions With Grain Boundaries
,” Curr. Opin. Solid State Mater. Sci.
, 18
(4
), pp. 227
–243
.23.
Zhu
, T.
, Li
, J.
, Samanta
, A.
, Kim
, H. G.
, and Suresh
, S.
, 2007
, “Interfacial Plasticity Governs Strain Rate Sensitivity and Ductility in Nanostructured Metals
,” Proc. Natl. Acad. Sci.
, 104
(9
), pp. 3031
–3036
.24.
Karnthaler
, H.
, 1978
, “The Study of Glide on {001} Planes in Fcc Metals Deformed at Room Temperature
,” Philos. Mag. A
, 38
(2
), pp. 141
–156
.25.
Wang
, J.
, and Huang
, H.
, 2006
, “Novel Deformation Mechanism of Twinned Nanowires
,” Appl. Phys. Lett.
, 88
(20
), p. 203112
.26.
Asaro
, R. J.
, and Kulkarni
, Y.
, 2008
, “Are Rate Sensitivity and Strength Effected by Cross-Slip in Nano-Twinned Fcc Metals
,” Scr. Mater.
, 58
(5
), pp. 389
–392
.27.
Jin
, Z.-H.
, Gumbsch
, P.
, Ma
, E.
, Albe
, K.
, Lu
, K.
, Hahn
, H.
, and Gleiter
, H.
, 2006
, “The Interaction Mechanism of Screw Dislocations With Coherent Twin Boundaries in Different Face-Centred Cubic Metals
,” Scr. Mater.
, 54
(6
), pp. 1163
–1168
.28.
Miller
, B.
, Fenske
, J.
, Su
, D.
, Li
, C.-M.
, Dougherty
, L.
, and Robertson
, I. M.
, 2006, “Grain Boundary Responses to Local and Applied Stress: An In Situ TEM Deformation Study
,” Symposium EE at the MRS Fall Meeting, Boston, MA, Nov. 27–Dec. 1, Paper No. 0976-EE02-01
.https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/grain-boundary-responses-to-local-and-applied-stress-an-in-situ-tem-deformation-study/55FB9263A3D72D9E262E958195E3C04C29.
Frenkel
, D.
, and Smit
, B.
, 2001
, Understanding Molecular Simulation: From Algorithms to Applications
, Academic Press
, Cornwell, UK
.30.
Christian
, J. W.
, and Mahajan
, S.
, 1995
, “Deformation Twinning
,” Prog. Mater. Sci.
, 39
(1
), pp. 1
–157
.31.
Beyerlein
, I. J.
, Zhang
, X.
, and Misra
, A.
, 2014
, “Growth Twins and Deformation Twins in Metals
,” Annu. Rev. Mater. Res.
, 44
, pp. 329
–363
.32.
Zhu
, Y. T.
, Liao
, X.
, and Wu
, X.
, 2012
, “Deformation Twinning in Nanocrystalline Materials
,” Prog. Mater. Sci.
, 57
(1
), pp. 1
–62
.33.
Chowdhury
, P.
, Sehitoglu
, H.
, Maier
, H.
, and Rateick
, R.
, 2015
, “Strength Prediction in NiCo Alloys—The Role of Composition and Nanotwins
,” Int. J. Plast.
, 79
, pp. 237–258.https://doi.org/10.1016/j.ijplas.2015.07.00234.
Patriarca
, L.
, Abuzaid
, W.
, Sehitoglu
, H.
, Maier
, H. J.
, and Chumlyakov
, Y.
, 2013
, “Twin Nucleation and Migration in FeCr Single Crystals
,” Mater. Charact.
, 75
, pp. 165
–175
.35.
Patriarca
, L.
, Abuzaid
, W.
, Sehitoglu
, H.
, and Maier
, H. J.
, 2013
, “Slip Transmission in Bcc FeCr Polycrystal
,” Mater. Sci. Eng. A
, 588
, pp. 308
–317
.36.
Cottrell
, A.
, and Bilby
, B.
, 1951
, “LX. A Mechanism for the Growth of Deformation Twins in Crystals
,” London, Edinburgh, Dublin Philos. Mag. J. Sci.
, 42
(329
), pp. 573
–581
.37.
Li
, S.
, Ding
, X.
, Deng
, J.
, Lookman
, T.
, Li
, J.
, Ren
, X.
, Sun
, J.
, and Saxena
, A.
, 2010
, “Superelasticity in Bcc Nanowires by a Reversible Twinning Mechanism
,” Phys. Rev. B
, 82
(20
), p. 205435
.38.
Harding
, J.
, 1967
, “The Yield and Fracture Behaviour of High-Purity Iron Single Crystals at High Rates Crystals of Strain
,” Proc. R. Soc. London A
, 299
(1459), pp. 464
–490
.39.
Kibey
, S.
, Liu
, J.
, Johnson
, D.
, and Sehitoglu
, H.
, 2007
, “Energy Pathways and Directionality in Deformation Twinning
,” Appl. Phys. Lett.
, 91
(18
), p. 181916
.https://doi.org/10.1063/1.280080640.
Lagerlöf
, K.
, 1993
, “On Deformation Twinning in Bcc Metals
,” Acta Metall. Mater.
, 41
(7
), pp. 2143
–2151
.41.
Sleeswyk
, A.
, 1963
, “½<111> Screw Dislocations and the Nucleation of {112}<111> Twins in the Bcc Lattice
,” Philos. Mag.
, 8
(93
), pp. 1467
–1486
.42.
Ogawa
, K.
, 1965
, “Edge Dislocations Dissociated in {112} Planes and Twinning Mechanism of Bcc Metals
,” Philos. Mag.
, 11
(110
), pp. 217
–233
.43.
Priestner
, R.
, and Leslie
, W.
, 1965
, “Nucleation of Deformation Twins at Slip Plane Intersections in BCC Metals
,” Philos. Mag.
, 11
(113
), pp. 895
–916
.44.
Venables
, J.
, 1961
, “Deformation Twinning in Face-Centred Cubic Metals
,” Philos. Mag.
, 6
(63
), pp. 379
–396
.45.
Venables
, J.
, 1974
, “On Dislocation Pole Models for Twinning
,” Philos. Mag.
, 30
(5
), pp. 1165
–1169
.46.
Sleeswyk
, A.
, 1974
, “Perfect Dislocation Pole Models for Twinning in the Fcc and Bcc Lattices
,” Philos. Mag.
, 29
(2
), pp. 407
–421
.47.
Mahajan
, S.
, and Chin
, G.
, 1973
, “Formation of Deformation Twins in Fcc Crystals
,” Acta Metall.
, 21
(10
), pp. 1353
–1363
.48.
Blewitt
, T.
, Coltman
, R.
, and Redman
, J.
, 1957
, “Low‐Temperature Deformation of Copper Single Crystals
,” J. Appl. Phys.
, 28
(6
), pp. 651
–660
.49.
Jin
, Z.
, and Bieler
, T. R.
, 1995
, “An In-Situ Observation of Mechanical Twin Nucleation and Propagation in TiAl
,” Philos. Mag. A
, 71
(5
), pp. 925
–947
.50.
Karaman
, I.
, Sehitoglu
, H.
, Gall
, K.
, Chumlyakov
, Y.
, and Maier
, H.
, 2000
, “Deformation of Single Crystal Hadfield Steel by Twinning and Slip
,” Acta Mater.
, 48
(6
), pp. 1345
–1359
.51.
Vitek
, V.
, 1968
, “Intrinsic Stacking Faults in Body-Centred Cubic Crystals
,” Philos. Mag.
, 18
(154
), pp. 773
–786
.52.
Chowdhury
, P.
, Sehitoglu
, H.
, Abuzaid
, W.
, and Maier
, H.
, 2015
, “Mechanical Response of Low Stacking Fault Energy Co–Ni Alloys–Continuum, Mesoscopic and Atomic Level Treatments
,” Int. J. Plast.
, 71
, pp. 32
–61
.53.
Chandran
, M.
, and Sondhi
, S.
, 2011
, “First-Principle Calculation of Stacking Fault Energies in Ni and Ni-Co Alloy
,” J. Appl. Phys.
, 109
(10
), p. 103525
.54.
Zhou
, X.
, Johnson
, R.
, and Wadley
, H.
, 2004
, “Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers
,” Phys. Rev. B
, 69
(14
), p. 144113
.55.
Pun
, G. P.
, and Mishin
, Y.
, 2012
, “Embedded-Atom Potential for Hcp and Fcc Cobalt
,” Phys. Rev. B
, 86
(13
), p. 134116
.56.
Siegel
, D. J.
, 2005
, “Generalized Stacking Fault Energies, Ductilities, and Twinnabilities of Ni and Selected Ni Alloys
,” Appl. Phys. Lett.
, 87
(12
), p. 121901
.57.
Van Swygenhoven
, H.
, Derlet
, P.
, and Frøseth
, A.
, 2004
, “Stacking Fault Energies and Slip in Nanocrystalline Metals
,” Nat. Mater.
, 3
(6
), pp. 399
–403
.58.
Cai
, T.
, Zhang
, Z. J.
, Zhang
, P.
, Yang
, J. B.
, and Zhang
, Z. F.
, 2014
, “Competition Between Slip and Twinning in Face-Centered Cubic Metals
,” J. Appl. Phys.
, 116
(16
), p. 163512
.59.
Tadmor
, E.
, and Bernstein
, N.
, 2004
, “A First-Principles Measure for the Twinnability of FCC Metals
,” J. Mech. Phys. Solids
, 52
(11
), pp. 2507
–2519
.60.
Warner
, D. H.
, Curtin
, W. A.
, and Qu
, S.
, 2007
, “Rate Dependence of Crack-Tip Processes Predicts Twinning Trends in Fcc Metals
,” Nat. Mater.
, 6
(11
), pp. 876
–881
.61.
Kibey
, S. A.
, 2007
, “Mesoscale Models for Stacking Faults, Deformation Twins and Martensitic Transformations: Linking Atomistics to Continuum,” Ph.D. thesis
, University of Illinois at Urbana-Champaign, Urbana, IL.http://adsabs.harvard.edu/abs/2007PhDT.......182K62.
Kalidindi
, S. R.
, 1998
, “Incorporation of Deformation Twinning in Crystal Plasticity Models
,” J. Mech. Phys. Solids
, 46
(2
), pp. 267
–290
.63.
Staroselsky
, A.
, and Anand
, L.
, 1998
, “Inelastic Deformation of Polycrystalline Face Centered Cubic Materials by Slip and Twinning
,” J. Mech. Phys. Solids
, 46
(4
), pp. 671
–696
.64.
Venables
, J.
, 1964
, “The Nucleation and Propagation of Deformation Twins
,” J. Phys. Chem. Solids
, 25
(7
), pp. 693
–700
.65.
Pirouz
, P.
, 1989
, “On Twinning and Polymorphic Transformations in Compound Semiconductors
,” Scr. Metall.
, 23
(3
), pp. 401
–406
.66.
Miura
, S.
, Takamura
, J.
, and Narita
, N.
, 1968, “Orientation Dependence of Flow Stress for Twinning in Silver Crystals
,” Transactions of the Japan Institute of Metals
, Sendai, Japan, p. 555
.67.
Meyers
, M.
, Vöhringer
, O.
, and Lubarda
, V.
, 2001
, “The Onset of Twinning in Metals: A Constitutive Description
,” Acta Mater.
, 49
(19
), pp. 4025
–4039
.68.
Fischer
, F.
, Appel
, F.
, and Clemens
, H.
, 2003
, “A Thermodynamical Model for the Nucleation of Mechanical Twins in TiAl
,” Acta Mater.
, 51
(5
), pp. 1249
–1260
.69.
Tadmor
, E.
, and Hai
, S.
, 2003
, “A Peierls Criterion for the Onset of Deformation Twinning at a Crack Tip
,” J. Mech. Phys. Solids
, 51
(5
), pp. 765
–793
.70.
Kibey
, S. A.
, Wang
, L.-L.
, Liu
, J. B.
, Johnson
, H. T.
, Sehitoglu
, H.
, and Johnson
, D. D.
, 2009
, “Quantitative Prediction of Twinning Stress in Fcc Alloys: Application to Cu-Al
,” Phys. Rev. B
, 79
(21
), p. 214202
.71.
Ojha
, A.
, Sehitoglu
, H.
, Patriarca
, L.
, and Maier
, H.
, 2014
, “Twin Migration in Fe-Based Bcc Crystals: Theory and Experiments
,” Philos. Mag.
, 94
(16
), pp. 1816
–1840
.72.
Joos
, B.
, Ren
, Q.
, and Duesbery
, M.
, 1994
, “Peierls-Nabarro Model of Dislocations in Silicon With Generalized Stacking-Fault Restoring Forces
,” Phys. Rev. B
, 50
(9
), p. 5890
.73.
Schoeck
, G.
, 1994
, “The Generalized Peierls–Nabarro Model
,” Philos. Mag. A
, 69
(6
), pp. 1085
–1095
.74.
Peierls
, R.
, 1940
, “The Size of a Dislocation
,” Proc. Phys. Soc.
, 52
(1
), pp. 34
–37
.75.
Nabarro
, F.
, 1947
, “Dislocations in a Simple Cubic Lattice
,” Proc. Phys. Soc.
, 59
(2
), p. 256
.76.
Kibey
, S.
, Liu
, J.
, Johnson
, D.
, and Sehitoglu
, H.
, 2007
, “Predicting Twinning Stress in Fcc Metals: Linking Twin-Energy Pathways to Twin Nucleation
,” Acta Mater.
, 55
(20
), pp. 6843
–6851
.77.
Koning
, M. D.
, Miller
, R.
, Bulatov
, V.
, and Abraham
, F. F.
, 2002
, “Modelling Grain-Boundary Resistance in Intergranular Dislocation Slip Transmission
,” Philos. Mag. A
, 82
(13
), pp. 2511
–2527
.78.
Hirth
, J. P.
, and Lothe
, J.
, 1982
, Theory of Dislocations
, Krieger Publishing Company
, Malabar, FL
.79.
Mahajan
, S.
, and Chin
, G.
, 1974
, “The Interaction of Twins With Existing Substructure and Twins in Cobalt-Iron Alloys
,” Acta Metall.
, 22
(9
), pp. 1113
–1119
.80.
Li
, J.
, 1960
, “The Interaction of Parallel Edge Dislocations With a Simple Tilt Dislocation Wall
,” Acta Metall.
, 8
(5
), pp. 296
–311
.81.
Li
, J.
, and Chalmers
, B.
, 1963
, “Energy of a Wall of Extended Dislocations
,” Acta Metall.
, 11
(4
), pp. 243
–249
.82.
Li
, J. C.
, and Needham
, C. D.
, 1960
, “Some Elastic Properties of a Screw Dislocation Wall
,” J. Appl. Phys.
, 31
(8
), pp. 1318
–1330
.83.
Neumann
, P.
, 1986
, “Low Energy Dislocation Configurations: A Possible Key to the Understanding of Fatigue
,” Mater. Sci. Eng.
, 81
, pp. 465
–475
.84.
Lu
, L.
, Chen
, X.
, Huang
, X.
, and Lu
, K.
, 2009
, “Revealing the Maximum Strength in Nanotwinned Copper
,” Science
, 323
(5914
), pp. 607
–610
.85.
Lu
, L.
, Shen
, Y.
, Chen
, X.
, Qian
, L.
, and Lu
, K.
, 2004
, “Ultrahigh Strength and High Electrical Conductivity in Copper
,” Science
, 304
(5669
), pp. 422
–426
.86.
Deng
, C.
, and Sansoz
, F.
, 2009
, “Fundamental Differences in the Plasticity of Periodically Twinned Nanowires in Au, Ag, Al, Cu, Pb, and Ni
,” Acta Mater.
, 57
(20
), pp. 6090
–6101
.87.
Asaro
, R. J.
, and Suresh
, S.
, 2005
, “Mechanistic Models for the Activation Volume and Rate Sensitivity in Metals With Nanocrystalline Grains and Nano-Scale Twins
,” Acta Mater.
, 53
(12
), pp. 3369
–3382
.88.
Lu
, L.
, Schwaiger
, R.
, Shan
, Z.
, Dao
, M.
, Lu
, K.
, and Suresh
, S.
, 2005
, “Nano-Sized Twins Induce High Rate Sensitivity of Flow Stress in Pure Copper
,” Acta Mater.
, 53
(7
), pp. 2169
–2179
.89.
Wei
, Q.
, Cheng
, S.
, Ramesh
, K.
, and Ma
, E.
, 2004
, “Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: Fcc Versus Bcc Metals
,” Mater. Sci. Eng. A
, 381
(1
), pp. 71
–79
.90.
Jennings
, A. T.
, Li
, J.
, and Greer
, J. R.
, 2011
, “Emergence of Strain-Rate Sensitivity in Cu Nanopillars: Transition From Dislocation Multiplication to Dislocation Nucleation
,” Acta Mater.
, 59
(14
), pp. 5627
–5637
.91.
Lim
, L.
, 1984
, “Slip-Twin Interactions in Nickel at 573K at Large Strains
,” Scr. Metall.
, 18
(10
), pp. 1139
–1142
.92.
Evans
, J.
, 1974
, “Heterogeneous Shear of a Twin Boundary in α-Brass
,” Scr. Metall.
, 8
(9
), pp. 1099
–1103
.93.
Deng
, C.
, and Sansoz
, F.
, 2009
, “Size-Dependent Yield Stress in Twinned Gold Nanowires Mediated by Site-Specific Surface Dislocation Emission
,” Appl. Phys. Lett.
, 95
(9
), p. 091914
.94.
Ezaz
, T.
, Sangid
, M. D.
, and Sehitoglu
, H.
, 2011
, “Energy Barriers Associated With Slip–Twin Interactions
,” Philos. Mag.
, 91
(10
), pp. 1464
–1488
.95.
Wu
, Z.
, Zhang
, Y.
, and Srolovitz
, D.
, 2009
, “Dislocation–Twin Interaction Mechanisms for Ultrahigh Strength and Ductility in Nanotwinned Metals
,” Acta Mater.
, 57
(15
), pp. 4508
–4518
.96.
Hartley
, C. S.
, and Blachon
, D. L.
, 1978
, “Reactions of Slip Dislocations at Coherent Twin Boundaries in Face‐Centered‐Cubic Metals
,” J. Appl. Phys.
, 49
(9
), pp. 4788
–4796
.97.
Lee
, T.
, Robertson
, I.
, and Birnbaum
, H.
, 1990
, “An In Situ Transmission Electron Microscope Deformation Study of the Slip Transfer Mechanisms in Metals
,” Metall. Trans. A
, 21
(9
), pp. 2437
–2447
.98.
Kulkarni
, Y.
, and Asaro
, R. J.
, 2009
, “Are Some Nanotwinned Fcc Metals Optimal for Strength, Ductility and Grain Stability?
,” Acta Mater.
, 57
(16
), pp. 4835
–4844
.99.
Müllner
, P.
, and Solenthaler
, C.
, 1997
, “On the Effect of Deformation Twinning on Defect Densities
,” Mater. Sci. Eng. A
, 230
(1
), pp. 107
–115
.100.
El Kadiri
, H.
, and Oppedal
, A.
, 2010
, “A Crystal Plasticity Theory for Latent Hardening by Glide Twinning Through Dislocation Transmutation and Twin Accommodation Effects
,” J. Mech. Phys. Solids
, 58
(4
), pp. 613
–624
.101.
Jin
, Z.-H.
, Gumbsch
, P.
, Albe
, K.
, Ma
, E.
, Lu
, K.
, Gleiter
, H.
, and Hahn
, H.
, 2008
, “Interactions Between Non-Screw Lattice Dislocations and Coherent Twin Boundaries in Face-Centered Cubic Metals
,” Acta Mater.
, 56
(5
), pp. 1126
–1135
.102.
Mahajan
, S.
, and Chin
, G.
, 1973
, “Twin-Slip, Twin-Twin and Slip-Twin Interactions in Co-8 wt.% Fe Alloy Single Crystals
,” Acta Metall.
, 21
(2
), pp. 173
–179
.103.
Alkan
, S.
, Chowdhury
, P.
, Sehitoglu
, H.
, Rateick
, R. G.
, and Maier
, H. J.
, 2016
, “Role of Nanotwins on Fatigue Crack Growth Resistance–Experiments and Theory
,” Int. J. Fatigue
, 84
, pp. 28
–39
.104.
Chowdhury
, P. B.
, Sehitoglu
, H.
, Rateick
, R. G.
, and Maier
, H. J.
, 2013
, “Modeling Fatigue Crack Growth Resistance of Nanocrystalline Alloys
,” Acta Mater.
, 61
(7
), pp. 2531
–2547
.105.
Chowdhury
, P.
, Sehitoglu
, H.
, and Rateick
, R.
, 2016
, “Recent Advances in Modeling Fatigue Cracks at Microscale in the Presence of High Density Coherent Twin Interfaces
,” Curr. Opin. Solid State Mater. Sci.
, 20
(3
), pp. 140
–150
.106.
Zhang
, R.
, Wang
, J.
, Beyerlein
, I.
, and Germann
, T.
, 2011
, “Twinning in Bcc Metals Under Shock Loading: A Challenge to Empirical Potentials
,” Philos. Mag. Lett.
, 91
(12
), pp. 731
–740
.107.
Shi
, Z.
, and Singh
, C. V.
, 2016
, “Competing Twinning Mechanisms in Body-Centered Cubic Metallic Nanowires
,” Scr. Mater.
, 113
, pp. 214
–217
.108.
Estrin
, Y.
, and Mecking
, H.
, 1984
, “A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,” Acta Metall.
, 32
(1
), pp. 57
–70
.109.
Jackson
, P.
, and Basinski
, Z.
, 1967
, “Latent Hardening and the Flow Stress in Copper Single Crystals
,” Can. J. Phys.
, 45
(2
), pp. 707
–735
.110.
Friedel
, J.
, 1955
, “CXXX. On the Linear Work Hardening Mate of Face-Centred Cubic Single Crystals
,” Philos. Mag.
, 46
(382
), pp. 1169
–1186
.111.
Lomer
, W.
, 1951
, “A Dislocation Reaction in the Face-Centred Cubic Lattice
,” London, Edinburgh, Dublin Philos. Mag. J. Sci.
, 42
(334
), pp. 1327
–1331
.112.
Garstone
, J.
, and Honeycombe
, R.
, 1957
, Dislocations and Mechanical Properties of Crystals
, Wiley
, New York
, p. 391
.113.
Robertson
, I. M.
, 1986
, “Microtwin Formation in Deformed Nickel
,” Philos. Mag. A
, 54
(6
), pp. 821
–835
.114.
Chowdhury
, P.
, Canadinc
, D.
, and Sehitoglu
, H.
, 2017
, “On Deformation Behavior of Fe-Mn Based Structural Alloys
,” Mater. Sci. Eng.: R: Rep.
, 122
, pp. 1
–28
.115.
Yamakov
, V.
, Wolf
, D.
, Phillpot
, S. R.
, Mukherjee
, A. K.
, and Gleiter
, H.
, 2002
, “Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation
,” Nat. Mater.
, 1
(1
), pp. 45
–49
.116.
Shabib
, I.
, and Miller
, R. E.
, 2009
, “Deformation Characteristics and Stress–Strain Response of Nanotwinned Copper Via Molecular Dynamics Simulation
,” Acta Mater.
, 57
(15
), pp. 4364
–4373
.117.
Li
, X.
, Wei
, Y.
, Lu
, L.
, Lu
, K.
, and Gao
, H.
, 2010
, “Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals
,” Nature
, 464
(7290
), pp. 877
–880
.118.
Zhu
, T.
, and Gao
, H.
, 2012
, “Plastic Deformation Mechanism in Nanotwinned Metals: An Insight From Molecular Dynamics and Mechanistic Modeling
,” Scr. Mater.
, 66
(11
), pp. 843
–848
.119.
Chowdhury
, P. B.
, 2011
, Fatigue Crack Growth (FCG) Modeling in the Presence of Nano-Obstacles
, University of Illinois at Urbana-Champaign
, Urbana, IL
.120.
Chowdhury
, P.
, Sehitoglu
, H.
, and Rateick
, R.
, 2017
, “Damage Tolerance of Carbon-Carbon Composites in Aerospace Application
,” Carbon
, 126
, pp. 382
–393
.https://doi.org/10.1016/j.carbon.2017.10.019121.
Rice
, J. R.
, 1992
, “Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,” J. Mech. Phys. Solids
, 40
(2
), pp. 239
–271
.122.
Rice
, J. R.
, and Thomson
, R.
, 1974
, “Ductile Versus Brittle Behaviour of Crystals
,” Philos. Mag.
, 29
(1
), pp. 73
–97
.123.
deCelis
, B.
, Argon
, A. S.
, and Yip
, S.
, 1983
, “Molecular Dynamics Simulation of Crack Tip Processes in Alpha‐Iron and Copper
,” J. Appl. Phys.
, 54
(9
), pp. 4864
–4878
.124.
Chowdhury
, P. B.
, Sehitoglu
, H.
, and Rateick
, R. G.
, 2014
, “Predicting Fatigue Resistance of Nano-Twinned Materials—Part I: Role of Cyclic Slip Irreversibility and Peierls Stress
,” Int. J. Fatigue
, 68
, pp. 277
–291
.125.
Chowdhury
, P. B.
, Sehitoglu
, H.
, and Rateick
, R. G.
, 2014
, “Predicting Fatigue Resistance of Nano-Twinned Materials—Part II: Effective Threshold Stress Intensity Factor Range
,” Int. J. Fatigue
, 68
, pp. 292
–301
.126.
Xie
, C.
, Fang
, Q. H.
, Liu
, X.
, Guo
, P. C.
, Chen
, J. K.
, Zhang
, M. H.
, Liu
, Y. W.
, Rolfe
, B.
, and Li
, L. X.
, 2016
, “Theoretical Study on the {1¯012} Deformation Twinning and Cracking in Coarse-Grained Magnesium Alloys
,” Int. J. Plast.
, 82
, pp. 44–61.https://doi.org/10.1016/j.ijplas.2016.02.001127.
Otsuka
, K.
, and Wayman
, C. M.
, 1999
, Shape Memory Materials
, Cambridge University Press
, Cambridge, UK
.128.
Chowdhury
, P.
, Patriarca
, L.
, Ren
, G.
, and Sehitoglu
, H.
, 2016
, “Molecular Dynamics Modeling of NiTi Superelasticity in Presence of Nanoprecipitates
,” Int. J. Plast.
, 81
, pp. 152
–167
.129.
Lai
, W.
, and Liu
, B.
, 2000
, “Lattice Stability of Some Ni-Ti Alloy Phases Versus Their Chemical Composition and Disordering
,” J. Phys.: Condens. Matter
, 12
(5
), p. L53
.130.
Chowdhury
, P.
, and Sehitoglu
, H.
, 2016
, “Significance of Slip Propensity Determination in Shape Memory Alloys
,” Scr. Mater.
, 119
, pp. 82–87.https://doi.org/10.1016/j.scriptamat.2016.03.017131.
Chowdhury
, P.
, and Sehitoglu
, H.
, 2017
, “Deformation Physics of Shape Memory Alloys–Fundamentals at Atomistic Frontier
,” Prog. Mater. Sci.
, 88
, pp. 49
–88
.132.
Mirzaeifar
, R.
, Gall
, K.
, Zhu
, T.
, Yavari
, A.
, and DesRoches
, R.
, 2014
, “Structural Transformations in NiTi Shape Memory Alloy Nanowires
,” J. Appl. Phys.
, 115
(19
), p. 194307
.133.
Mutter
, D.
, and Nielaba
, P.
, 2013
, “Simulation of the Shape Memory Effect in a NiTi Nano Model System
,” J. Alloys Compd.
, 577
(Suppl. 1), pp. S83
–S87
.134.
Chowdhury
, P.
, Ren
, G.
, and Sehitoglu
, H.
, 2015
, “NiTi Superelasticity Via Atomistic Simulations
,” Philos. Mag. Lett.
, 95
(12), pp. 1
–13
.https://doi.org/10.1080/09500839.2015.1123819135.
Chowdhury
, P.
, and Sehitoglu
, H.
, 2016
, “A Revisit to Atomistic Rationale for Slip in Shape Memory Alloys
,” Prog. Mater. Sci.
, 85
, pp. 1–42.https://doi.org/10.1016/j.pmatsci.2016.10.002136.
Wang
, F.
, and Agnew
, S. R.
, 2016
, “Dislocation Transmutation by Tension Twinning in Magnesium Alloy AZ31
,” Int. J. Plast.
, 81
, pp. 63
–86
.137.
El Kadiri
, H.
, Baird
, J. C.
, Kapil
, J.
, Oppedal
, A. L.
, Cherkaoui
, M.
, and Vogel
, S. C.
, 2013
, “Flow Asymmetry and Nucleation Stresses of Twinning and Non-Basal Slip in Magnesium
,” Int. J. Plast.
, 44
, pp. 111
–120
.138.
Ishii
, A.
, Li
, J.
, and Ogata
, S.
, 2016
, “Shuffling-Controlled Versus Strain-Controlled Deformation Twinning: The Case for HCP Mg Twin Nucleation
,” Int. J. Plast.
, 82
, pp. 32–43.https://doi.org/10.1016/j.ijplas.2016.01.019139.
Ngan
, A.
, 1995
, “A Critique on Some of the Concepts Regarding Planar Faults in Crystals
,” Philos. Mag. Lett.
, 72
(1
), pp. 11
–19
.140.
Zimmerman
, J. A.
, Gao
, H.
, and Abraham
, F. F.
, 2000
, “Generalized Stacking Fault Energies for Embedded Atom FCC Metals
,” Modell. Simul. Mater. Sci. Eng.
, 8
(2
), p. 103
.141.
Kibey
, S.
, Liu
, J. B.
, Johnson
, D. D.
, and Sehitoglu
, H.
, 2006
, “Generalized Planar Fault Energies and Twinning in Cu–Al Alloys
,” Appl. Phys. Lett.
, 89
(19
), p. 191911.https://doi.org/10.1063/1.2387133142.
Cai
, W.
, and Bulatov
, V. V.
, 2004
, “Mobility Laws in Dislocation Dynamics Simulations
,” Mater. Sci. Eng.: A
, 387–389
, pp. 277
–281
.143.
Devincre
, B.
, Kubin
, L.
, Lemarchand
, C.
, and Madec
, R.
, 2001
, “Mesoscopic Simulations of Plastic Deformation
,” Mater. Sci. Eng.: A
, 309–310
, pp. 211
–219
.144.
Amodeo
, R.
, and Ghoniem
, N.
, 1990
, “Dislocation Dynamics—I: A Proposed Methodology for Deformation Micromechanics
,” Phys. Rev. B
, 41
(10
), p. 6958
.145.
Kocks
, U. F.
, Argon
, A. S.
, and Ashby
, M. F.
, 1975
, Thermodynamics and Kinetics of Slip
, Pergamon Press
, Oxford, UK
.146.
Clayton
, J. D.
, 2010
, Nonlinear Mechanics of Crystals
, Springer Science & Business Media
, New York
.Copyright © 2018 by ASME
You do not currently have access to this content.