This paper recounts recent advances on the atomistic modeling of twinning in body-centered cubic (bcc) and face-centered cubic (fcc) alloy. Specifically, we have reviewed: (i) the experimental evidence of twinning-dominated deformation in single- and multi-grain microstructures, (ii) calculation of generalized planar fault energy (GPFE) landscapes, and (iii) the prediction of critical friction stresses to initiate twinning-governed plasticity (e.g., twin nucleation, twin–slip and twin–twin interactions). Possible avenues for further research are outlined.

References

1.
Tucker
,
G. J.
, and
Foiles
,
S. M.
,
2015
, “
Quantifying the Influence of Twin Boundaries on the Deformation of Nanocrystalline Copper Using Atomistic Simulations
,”
Int. J. Plast.
,
65
, pp.
191
205
.
2.
Li
,
J.
,
Ngan
,
A. H.
, and
Gumbsch
,
P.
,
2003
, “
Atomistic Modeling of Mechanical Behavior
,”
Acta Mater.
,
51
(
19
), pp.
5711
5742
.
3.
Ogata
,
S.
,
Li
,
J.
, and
Yip
,
S.
,
2005
, “
Energy Landscape of Deformation Twinning in Bcc and Fcc Metals
,”
Phys. Rev. B
,
71
(
22
), p.
224102
.
4.
Ogata
,
S.
,
Li
,
J.
, and
Yip
,
S.
,
2002
, “
Ideal Pure Shear Strength of Aluminum and Copper
,”
Science
,
298
(
5594
), pp.
807
811
.
5.
Jin
,
Z. H.
,
Dunham
,
S. T.
,
Gleiter
,
H.
,
Hahn
,
H.
, and
Gumbsch
,
P.
,
2011
, “
A Universal Scaling of Planar Fault Energy Barriers in Face-Centered Cubic Metals
,”
Scr. Mater.
,
64
(
7
), pp.
605
608
.
6.
Chowdhury
,
P.
, and
Sehitoglu
,
H.
,
2016
, “
Mechanisms of Fatigue Crack Growth—A Critical Digest of Theoretical Developments
,”
Fatigue Fract. Eng. Mater. Struct.
,
39
(
6
), pp.
652
674
.http://onlinelibrary.wiley.com/doi/10.1111/ffe.12392/abstract
7.
Remy
,
L.
,
1977
, “
Twin-Twin Interaction in FCC Crystals
,”
Scr. Metall.
,
11
(
3
), pp.
169
172
.
8.
Remy
,
L.
,
1978
, “
Kinetics of Fcc Deformation Twinning and Its Relationship to Stress-Strain Behaviour
,”
Acta Metall.
,
26
(
3
), pp.
443
451
.
9.
McPhie
,
M.
,
Berbenni
,
S.
, and
Cherkaoui
,
M.
,
2012
, “
Activation Energy for Nucleation of Partial Dislocation From Grain Boundaries
,”
Comput. Mater. Sci.
,
62
, pp.
169
174
.
10.
Warner
,
D. H.
,
Sansoz
,
F.
, and
Molinari
,
J. F.
,
2006
, “
Atomistic Based Continuum Investigation of Plastic Deformation in Nanocrystalline Copper
,”
Int. J. Plast.
,
22
(
4
), pp.
754
774
.
11.
M'Guil
,
S.
,
Wen
,
W.
,
Ahzi
,
S.
,
Gracio
,
J. J.
, and
Davies
,
R. W.
,
2015
, “
Analysis of Shear Deformation by Slip and Twinning in Low and High/Medium Stacking Fault Energy Fcc Metals Using the ϕ-Model
,”
Int. J. Plast.
,
68
, pp.
132
149
.
12.
Sun
,
C. Y.
,
Guo
,
N.
,
Fu
,
M. W.
, and
Wang
,
S. W.
,
2016
, “
Modeling of Slip, Twinning and Transformation Induced Plastic Deformation for TWIP Steel Based on Crystal Plasticity
,”
Int. J. Plast.
,
76
, pp.
186
212
.
13.
Müllner
,
P.
, and
Romanov
,
A.
,
2000
, “
Internal Twinning in Deformation Twinning
,”
Acta Mater.
,
48
(
9
), pp.
2323
2337
.
14.
Tadmor
,
E. B.
, and
Miller
,
R. E.
,
2011
,
Modeling Materials: Continuum, Atomistic and Multiscale Techniques
,
Cambridge University Press
,
Cambridge, UK
.
15.
Jo
,
M.
,
Koo
,
Y. M.
,
Lee
,
B.-J.
,
Johansson
,
B.
,
Vitos
,
L.
, and
Kwon
,
S. K.
,
2014
, “
Theory for Plasticity of Face-Centered Cubic Metals
,”
Proc. Natl. Acad. Sci.
,
111
(
18
), pp.
6560
6565
.
16.
Li
,
W.
,
Lu
,
S.
,
Hu
,
Q.-M.
,
Kwon
,
S. K.
,
Johansson
,
B.
, and
Vitos
,
L.
,
2014
, “
Generalized Stacking Fault Energies of Alloys
,”
J. Phys.: Condens. Matter
,
26
(
26
), p.
265005
.
17.
Lebensohn
,
R.
, and
Tomé
,
C.
,
1993
, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,”
Acta Metall. Mater.
,
41
(
9
), pp.
2611
2624
.
18.
Chowdhury
,
P. B.
,
2016
, “Modeling Mechanical Properties–Linking Atomistics to Continuum,”
Ph.D. thesis
, University of Illinois at Urbana-Champaign, Urbana, IL.https://www.ideals.illinois.edu/handle/2142/90474
19.
Remy
,
L.
,
1981
, “
The Interaction Between Slip and Twinning Systems and the Influence of Twinning on the Mechanical Behavior of Fcc Metals and Alloys
,”
Metall. Trans. A
,
12
(
3
), pp.
387
408
.
20.
Wang
,
J.
,
Anderoglu
,
O.
,
Hirth
,
J. P.
,
Misra
,
A.
, and
Zhang
,
X.
,
2009
, “
Dislocation Structures of Σ3 {112} Twin Boundaries in Face Centered Cubic Metals
,”
Appl. Phys. Lett.
,
95
(
2
), p.
021908
.
21.
Sutton
,
A. P.
, and
Balluffi
,
R. W.
,
1995
, “Interfaces in Crystalline Materials,”
Phys. Today
,
49
(
9
), p.
88
.
22.
Kacher
,
J.
,
Eftink
,
B.
,
Cui
,
B.
, and
Robertson
,
I.
,
2014
, “
Dislocation Interactions With Grain Boundaries
,”
Curr. Opin. Solid State Mater. Sci.
,
18
(
4
), pp.
227
243
.
23.
Zhu
,
T.
,
Li
,
J.
,
Samanta
,
A.
,
Kim
,
H. G.
, and
Suresh
,
S.
,
2007
, “
Interfacial Plasticity Governs Strain Rate Sensitivity and Ductility in Nanostructured Metals
,”
Proc. Natl. Acad. Sci.
,
104
(
9
), pp.
3031
3036
.
24.
Karnthaler
,
H.
,
1978
, “
The Study of Glide on {001} Planes in Fcc Metals Deformed at Room Temperature
,”
Philos. Mag. A
,
38
(
2
), pp.
141
156
.
25.
Wang
,
J.
, and
Huang
,
H.
,
2006
, “
Novel Deformation Mechanism of Twinned Nanowires
,”
Appl. Phys. Lett.
,
88
(
20
), p.
203112
.
26.
Asaro
,
R. J.
, and
Kulkarni
,
Y.
,
2008
, “
Are Rate Sensitivity and Strength Effected by Cross-Slip in Nano-Twinned Fcc Metals
,”
Scr. Mater.
,
58
(
5
), pp.
389
392
.
27.
Jin
,
Z.-H.
,
Gumbsch
,
P.
,
Ma
,
E.
,
Albe
,
K.
,
Lu
,
K.
,
Hahn
,
H.
, and
Gleiter
,
H.
,
2006
, “
The Interaction Mechanism of Screw Dislocations With Coherent Twin Boundaries in Different Face-Centred Cubic Metals
,”
Scr. Mater.
,
54
(
6
), pp.
1163
1168
.
28.
Miller
,
B.
,
Fenske
,
J.
,
Su
,
D.
,
Li
,
C.-M.
,
Dougherty
,
L.
, and
Robertson
,
I. M.
, 2006, “
Grain Boundary Responses to Local and Applied Stress: An In Situ TEM Deformation Study
,” Symposium EE at the MRS Fall Meeting, Boston, MA, Nov. 27–Dec. 1, Paper No.
0976-EE02-01
.https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/grain-boundary-responses-to-local-and-applied-stress-an-in-situ-tem-deformation-study/55FB9263A3D72D9E262E958195E3C04C
29.
Frenkel
,
D.
, and
Smit
,
B.
,
2001
,
Understanding Molecular Simulation: From Algorithms to Applications
,
Academic Press
,
Cornwell, UK
.
30.
Christian
,
J. W.
, and
Mahajan
,
S.
,
1995
, “
Deformation Twinning
,”
Prog. Mater. Sci.
,
39
(
1
), pp.
1
157
.
31.
Beyerlein
,
I. J.
,
Zhang
,
X.
, and
Misra
,
A.
,
2014
, “
Growth Twins and Deformation Twins in Metals
,”
Annu. Rev. Mater. Res.
,
44
, pp.
329
363
.
32.
Zhu
,
Y. T.
,
Liao
,
X.
, and
Wu
,
X.
,
2012
, “
Deformation Twinning in Nanocrystalline Materials
,”
Prog. Mater. Sci.
,
57
(
1
), pp.
1
62
.
33.
Chowdhury
,
P.
,
Sehitoglu
,
H.
,
Maier
,
H.
, and
Rateick
,
R.
,
2015
, “
Strength Prediction in NiCo Alloys—The Role of Composition and Nanotwins
,”
Int. J. Plast.
,
79
, pp. 237–258.https://doi.org/10.1016/j.ijplas.2015.07.002
34.
Patriarca
,
L.
,
Abuzaid
,
W.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Chumlyakov
,
Y.
,
2013
, “
Twin Nucleation and Migration in FeCr Single Crystals
,”
Mater. Charact.
,
75
, pp.
165
175
.
35.
Patriarca
,
L.
,
Abuzaid
,
W.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
,
2013
, “
Slip Transmission in Bcc FeCr Polycrystal
,”
Mater. Sci. Eng. A
,
588
, pp.
308
317
.
36.
Cottrell
,
A.
, and
Bilby
,
B.
,
1951
, “
LX. A Mechanism for the Growth of Deformation Twins in Crystals
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
42
(
329
), pp.
573
581
.
37.
Li
,
S.
,
Ding
,
X.
,
Deng
,
J.
,
Lookman
,
T.
,
Li
,
J.
,
Ren
,
X.
,
Sun
,
J.
, and
Saxena
,
A.
,
2010
, “
Superelasticity in Bcc Nanowires by a Reversible Twinning Mechanism
,”
Phys. Rev. B
,
82
(
20
), p.
205435
.
38.
Harding
,
J.
,
1967
, “
The Yield and Fracture Behaviour of High-Purity Iron Single Crystals at High Rates Crystals of Strain
,”
Proc. R. Soc. London A
,
299
(1459), pp.
464
490
.
39.
Kibey
,
S.
,
Liu
,
J.
,
Johnson
,
D.
, and
Sehitoglu
,
H.
,
2007
, “
Energy Pathways and Directionality in Deformation Twinning
,”
Appl. Phys. Lett.
,
91
(
18
), p.
181916
.https://doi.org/10.1063/1.2800806
40.
Lagerlöf
,
K.
,
1993
, “
On Deformation Twinning in Bcc Metals
,”
Acta Metall. Mater.
,
41
(
7
), pp.
2143
2151
.
41.
Sleeswyk
,
A.
,
1963
, “
½<111> Screw Dislocations and the Nucleation of {112}<111> Twins in the Bcc Lattice
,”
Philos. Mag.
,
8
(
93
), pp.
1467
1486
.
42.
Ogawa
,
K.
,
1965
, “
Edge Dislocations Dissociated in {112} Planes and Twinning Mechanism of Bcc Metals
,”
Philos. Mag.
,
11
(
110
), pp.
217
233
.
43.
Priestner
,
R.
, and
Leslie
,
W.
,
1965
, “
Nucleation of Deformation Twins at Slip Plane Intersections in BCC Metals
,”
Philos. Mag.
,
11
(
113
), pp.
895
916
.
44.
Venables
,
J.
,
1961
, “
Deformation Twinning in Face-Centred Cubic Metals
,”
Philos. Mag.
,
6
(
63
), pp.
379
396
.
45.
Venables
,
J.
,
1974
, “
On Dislocation Pole Models for Twinning
,”
Philos. Mag.
,
30
(
5
), pp.
1165
1169
.
46.
Sleeswyk
,
A.
,
1974
, “
Perfect Dislocation Pole Models for Twinning in the Fcc and Bcc Lattices
,”
Philos. Mag.
,
29
(
2
), pp.
407
421
.
47.
Mahajan
,
S.
, and
Chin
,
G.
,
1973
, “
Formation of Deformation Twins in Fcc Crystals
,”
Acta Metall.
,
21
(
10
), pp.
1353
1363
.
48.
Blewitt
,
T.
,
Coltman
,
R.
, and
Redman
,
J.
,
1957
, “
Low‐Temperature Deformation of Copper Single Crystals
,”
J. Appl. Phys.
,
28
(
6
), pp.
651
660
.
49.
Jin
,
Z.
, and
Bieler
,
T. R.
,
1995
, “
An In-Situ Observation of Mechanical Twin Nucleation and Propagation in TiAl
,”
Philos. Mag. A
,
71
(
5
), pp.
925
947
.
50.
Karaman
,
I.
,
Sehitoglu
,
H.
,
Gall
,
K.
,
Chumlyakov
,
Y.
, and
Maier
,
H.
,
2000
, “
Deformation of Single Crystal Hadfield Steel by Twinning and Slip
,”
Acta Mater.
,
48
(
6
), pp.
1345
1359
.
51.
Vitek
,
V.
,
1968
, “
Intrinsic Stacking Faults in Body-Centred Cubic Crystals
,”
Philos. Mag.
,
18
(
154
), pp.
773
786
.
52.
Chowdhury
,
P.
,
Sehitoglu
,
H.
,
Abuzaid
,
W.
, and
Maier
,
H.
,
2015
, “
Mechanical Response of Low Stacking Fault Energy Co–Ni Alloys–Continuum, Mesoscopic and Atomic Level Treatments
,”
Int. J. Plast.
,
71
, pp.
32
61
.
53.
Chandran
,
M.
, and
Sondhi
,
S.
,
2011
, “
First-Principle Calculation of Stacking Fault Energies in Ni and Ni-Co Alloy
,”
J. Appl. Phys.
,
109
(
10
), p.
103525
.
54.
Zhou
,
X.
,
Johnson
,
R.
, and
Wadley
,
H.
,
2004
, “
Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers
,”
Phys. Rev. B
,
69
(
14
), p.
144113
.
55.
Pun
,
G. P.
, and
Mishin
,
Y.
,
2012
, “
Embedded-Atom Potential for Hcp and Fcc Cobalt
,”
Phys. Rev. B
,
86
(
13
), p.
134116
.
56.
Siegel
,
D. J.
,
2005
, “
Generalized Stacking Fault Energies, Ductilities, and Twinnabilities of Ni and Selected Ni Alloys
,”
Appl. Phys. Lett.
,
87
(
12
), p.
121901
.
57.
Van Swygenhoven
,
H.
,
Derlet
,
P.
, and
Frøseth
,
A.
,
2004
, “
Stacking Fault Energies and Slip in Nanocrystalline Metals
,”
Nat. Mater.
,
3
(
6
), pp.
399
403
.
58.
Cai
,
T.
,
Zhang
,
Z. J.
,
Zhang
,
P.
,
Yang
,
J. B.
, and
Zhang
,
Z. F.
,
2014
, “
Competition Between Slip and Twinning in Face-Centered Cubic Metals
,”
J. Appl. Phys.
,
116
(
16
), p.
163512
.
59.
Tadmor
,
E.
, and
Bernstein
,
N.
,
2004
, “
A First-Principles Measure for the Twinnability of FCC Metals
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2507
2519
.
60.
Warner
,
D. H.
,
Curtin
,
W. A.
, and
Qu
,
S.
,
2007
, “
Rate Dependence of Crack-Tip Processes Predicts Twinning Trends in Fcc Metals
,”
Nat. Mater.
,
6
(
11
), pp.
876
881
.
61.
Kibey
,
S. A.
,
2007
, “Mesoscale Models for Stacking Faults, Deformation Twins and Martensitic Transformations: Linking Atomistics to Continuum,”
Ph.D. thesis
, University of Illinois at Urbana-Champaign, Urbana, IL.http://adsabs.harvard.edu/abs/2007PhDT.......182K
62.
Kalidindi
,
S. R.
,
1998
, “
Incorporation of Deformation Twinning in Crystal Plasticity Models
,”
J. Mech. Phys. Solids
,
46
(
2
), pp.
267
290
.
63.
Staroselsky
,
A.
, and
Anand
,
L.
,
1998
, “
Inelastic Deformation of Polycrystalline Face Centered Cubic Materials by Slip and Twinning
,”
J. Mech. Phys. Solids
,
46
(
4
), pp.
671
696
.
64.
Venables
,
J.
,
1964
, “
The Nucleation and Propagation of Deformation Twins
,”
J. Phys. Chem. Solids
,
25
(
7
), pp.
693
700
.
65.
Pirouz
,
P.
,
1989
, “
On Twinning and Polymorphic Transformations in Compound Semiconductors
,”
Scr. Metall.
,
23
(
3
), pp.
401
406
.
66.
Miura
,
S.
,
Takamura
,
J.
, and
Narita
,
N.
, 1968, “
Orientation Dependence of Flow Stress for Twinning in Silver Crystals
,”
Transactions of the Japan Institute of Metals
, Sendai, Japan, p.
555
.
67.
Meyers
,
M.
,
Vöhringer
,
O.
, and
Lubarda
,
V.
,
2001
, “
The Onset of Twinning in Metals: A Constitutive Description
,”
Acta Mater.
,
49
(
19
), pp.
4025
4039
.
68.
Fischer
,
F.
,
Appel
,
F.
, and
Clemens
,
H.
,
2003
, “
A Thermodynamical Model for the Nucleation of Mechanical Twins in TiAl
,”
Acta Mater.
,
51
(
5
), pp.
1249
1260
.
69.
Tadmor
,
E.
, and
Hai
,
S.
,
2003
, “
A Peierls Criterion for the Onset of Deformation Twinning at a Crack Tip
,”
J. Mech. Phys. Solids
,
51
(
5
), pp.
765
793
.
70.
Kibey
,
S. A.
,
Wang
,
L.-L.
,
Liu
,
J. B.
,
Johnson
,
H. T.
,
Sehitoglu
,
H.
, and
Johnson
,
D. D.
,
2009
, “
Quantitative Prediction of Twinning Stress in Fcc Alloys: Application to Cu-Al
,”
Phys. Rev. B
,
79
(
21
), p.
214202
.
71.
Ojha
,
A.
,
Sehitoglu
,
H.
,
Patriarca
,
L.
, and
Maier
,
H.
,
2014
, “
Twin Migration in Fe-Based Bcc Crystals: Theory and Experiments
,”
Philos. Mag.
,
94
(
16
), pp.
1816
1840
.
72.
Joos
,
B.
,
Ren
,
Q.
, and
Duesbery
,
M.
,
1994
, “
Peierls-Nabarro Model of Dislocations in Silicon With Generalized Stacking-Fault Restoring Forces
,”
Phys. Rev. B
,
50
(
9
), p.
5890
.
73.
Schoeck
,
G.
,
1994
, “
The Generalized Peierls–Nabarro Model
,”
Philos. Mag. A
,
69
(
6
), pp.
1085
1095
.
74.
Peierls
,
R.
,
1940
, “
The Size of a Dislocation
,”
Proc. Phys. Soc.
,
52
(
1
), pp.
34
37
.
75.
Nabarro
,
F.
,
1947
, “
Dislocations in a Simple Cubic Lattice
,”
Proc. Phys. Soc.
,
59
(
2
), p.
256
.
76.
Kibey
,
S.
,
Liu
,
J.
,
Johnson
,
D.
, and
Sehitoglu
,
H.
,
2007
, “
Predicting Twinning Stress in Fcc Metals: Linking Twin-Energy Pathways to Twin Nucleation
,”
Acta Mater.
,
55
(
20
), pp.
6843
6851
.
77.
Koning
,
M. D.
,
Miller
,
R.
,
Bulatov
,
V.
, and
Abraham
,
F. F.
,
2002
, “
Modelling Grain-Boundary Resistance in Intergranular Dislocation Slip Transmission
,”
Philos. Mag. A
,
82
(
13
), pp.
2511
2527
.
78.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
Krieger Publishing Company
,
Malabar, FL
.
79.
Mahajan
,
S.
, and
Chin
,
G.
,
1974
, “
The Interaction of Twins With Existing Substructure and Twins in Cobalt-Iron Alloys
,”
Acta Metall.
,
22
(
9
), pp.
1113
1119
.
80.
Li
,
J.
,
1960
, “
The Interaction of Parallel Edge Dislocations With a Simple Tilt Dislocation Wall
,”
Acta Metall.
,
8
(
5
), pp.
296
311
.
81.
Li
,
J.
, and
Chalmers
,
B.
,
1963
, “
Energy of a Wall of Extended Dislocations
,”
Acta Metall.
,
11
(
4
), pp.
243
249
.
82.
Li
,
J. C.
, and
Needham
,
C. D.
,
1960
, “
Some Elastic Properties of a Screw Dislocation Wall
,”
J. Appl. Phys.
,
31
(
8
), pp.
1318
1330
.
83.
Neumann
,
P.
,
1986
, “
Low Energy Dislocation Configurations: A Possible Key to the Understanding of Fatigue
,”
Mater. Sci. Eng.
,
81
, pp.
465
475
.
84.
Lu
,
L.
,
Chen
,
X.
,
Huang
,
X.
, and
Lu
,
K.
,
2009
, “
Revealing the Maximum Strength in Nanotwinned Copper
,”
Science
,
323
(
5914
), pp.
607
610
.
85.
Lu
,
L.
,
Shen
,
Y.
,
Chen
,
X.
,
Qian
,
L.
, and
Lu
,
K.
,
2004
, “
Ultrahigh Strength and High Electrical Conductivity in Copper
,”
Science
,
304
(
5669
), pp.
422
426
.
86.
Deng
,
C.
, and
Sansoz
,
F.
,
2009
, “
Fundamental Differences in the Plasticity of Periodically Twinned Nanowires in Au, Ag, Al, Cu, Pb, and Ni
,”
Acta Mater.
,
57
(
20
), pp.
6090
6101
.
87.
Asaro
,
R. J.
, and
Suresh
,
S.
,
2005
, “
Mechanistic Models for the Activation Volume and Rate Sensitivity in Metals With Nanocrystalline Grains and Nano-Scale Twins
,”
Acta Mater.
,
53
(
12
), pp.
3369
3382
.
88.
Lu
,
L.
,
Schwaiger
,
R.
,
Shan
,
Z.
,
Dao
,
M.
,
Lu
,
K.
, and
Suresh
,
S.
,
2005
, “
Nano-Sized Twins Induce High Rate Sensitivity of Flow Stress in Pure Copper
,”
Acta Mater.
,
53
(
7
), pp.
2169
2179
.
89.
Wei
,
Q.
,
Cheng
,
S.
,
Ramesh
,
K.
, and
Ma
,
E.
,
2004
, “
Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: Fcc Versus Bcc Metals
,”
Mater. Sci. Eng. A
,
381
(
1
), pp.
71
79
.
90.
Jennings
,
A. T.
,
Li
,
J.
, and
Greer
,
J. R.
,
2011
, “
Emergence of Strain-Rate Sensitivity in Cu Nanopillars: Transition From Dislocation Multiplication to Dislocation Nucleation
,”
Acta Mater.
,
59
(
14
), pp.
5627
5637
.
91.
Lim
,
L.
,
1984
, “
Slip-Twin Interactions in Nickel at 573K at Large Strains
,”
Scr. Metall.
,
18
(
10
), pp.
1139
1142
.
92.
Evans
,
J.
,
1974
, “
Heterogeneous Shear of a Twin Boundary in α-Brass
,”
Scr. Metall.
,
8
(
9
), pp.
1099
1103
.
93.
Deng
,
C.
, and
Sansoz
,
F.
,
2009
, “
Size-Dependent Yield Stress in Twinned Gold Nanowires Mediated by Site-Specific Surface Dislocation Emission
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091914
.
94.
Ezaz
,
T.
,
Sangid
,
M. D.
, and
Sehitoglu
,
H.
,
2011
, “
Energy Barriers Associated With Slip–Twin Interactions
,”
Philos. Mag.
,
91
(
10
), pp.
1464
1488
.
95.
Wu
,
Z.
,
Zhang
,
Y.
, and
Srolovitz
,
D.
,
2009
, “
Dislocation–Twin Interaction Mechanisms for Ultrahigh Strength and Ductility in Nanotwinned Metals
,”
Acta Mater.
,
57
(
15
), pp.
4508
4518
.
96.
Hartley
,
C. S.
, and
Blachon
,
D. L.
,
1978
, “
Reactions of Slip Dislocations at Coherent Twin Boundaries in Face‐Centered‐Cubic Metals
,”
J. Appl. Phys.
,
49
(
9
), pp.
4788
4796
.
97.
Lee
,
T.
,
Robertson
,
I.
, and
Birnbaum
,
H.
,
1990
, “
An In Situ Transmission Electron Microscope Deformation Study of the Slip Transfer Mechanisms in Metals
,”
Metall. Trans. A
,
21
(
9
), pp.
2437
2447
.
98.
Kulkarni
,
Y.
, and
Asaro
,
R. J.
,
2009
, “
Are Some Nanotwinned Fcc Metals Optimal for Strength, Ductility and Grain Stability?
,”
Acta Mater.
,
57
(
16
), pp.
4835
4844
.
99.
Müllner
,
P.
, and
Solenthaler
,
C.
,
1997
, “
On the Effect of Deformation Twinning on Defect Densities
,”
Mater. Sci. Eng. A
,
230
(
1
), pp.
107
115
.
100.
El Kadiri
,
H.
, and
Oppedal
,
A.
,
2010
, “
A Crystal Plasticity Theory for Latent Hardening by Glide Twinning Through Dislocation Transmutation and Twin Accommodation Effects
,”
J. Mech. Phys. Solids
,
58
(
4
), pp.
613
624
.
101.
Jin
,
Z.-H.
,
Gumbsch
,
P.
,
Albe
,
K.
,
Ma
,
E.
,
Lu
,
K.
,
Gleiter
,
H.
, and
Hahn
,
H.
,
2008
, “
Interactions Between Non-Screw Lattice Dislocations and Coherent Twin Boundaries in Face-Centered Cubic Metals
,”
Acta Mater.
,
56
(
5
), pp.
1126
1135
.
102.
Mahajan
,
S.
, and
Chin
,
G.
,
1973
, “
Twin-Slip, Twin-Twin and Slip-Twin Interactions in Co-8 wt.% Fe Alloy Single Crystals
,”
Acta Metall.
,
21
(
2
), pp.
173
179
.
103.
Alkan
,
S.
,
Chowdhury
,
P.
,
Sehitoglu
,
H.
,
Rateick
,
R. G.
, and
Maier
,
H. J.
,
2016
, “
Role of Nanotwins on Fatigue Crack Growth Resistance–Experiments and Theory
,”
Int. J. Fatigue
,
84
, pp.
28
39
.
104.
Chowdhury
,
P. B.
,
Sehitoglu
,
H.
,
Rateick
,
R. G.
, and
Maier
,
H. J.
,
2013
, “
Modeling Fatigue Crack Growth Resistance of Nanocrystalline Alloys
,”
Acta Mater.
,
61
(
7
), pp.
2531
2547
.
105.
Chowdhury
,
P.
,
Sehitoglu
,
H.
, and
Rateick
,
R.
,
2016
, “
Recent Advances in Modeling Fatigue Cracks at Microscale in the Presence of High Density Coherent Twin Interfaces
,”
Curr. Opin. Solid State Mater. Sci.
,
20
(
3
), pp.
140
150
.
106.
Zhang
,
R.
,
Wang
,
J.
,
Beyerlein
,
I.
, and
Germann
,
T.
,
2011
, “
Twinning in Bcc Metals Under Shock Loading: A Challenge to Empirical Potentials
,”
Philos. Mag. Lett.
,
91
(
12
), pp.
731
740
.
107.
Shi
,
Z.
, and
Singh
,
C. V.
,
2016
, “
Competing Twinning Mechanisms in Body-Centered Cubic Metallic Nanowires
,”
Scr. Mater.
,
113
, pp.
214
217
.
108.
Estrin
,
Y.
, and
Mecking
,
H.
,
1984
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
,
32
(
1
), pp.
57
70
.
109.
Jackson
,
P.
, and
Basinski
,
Z.
,
1967
, “
Latent Hardening and the Flow Stress in Copper Single Crystals
,”
Can. J. Phys.
,
45
(
2
), pp.
707
735
.
110.
Friedel
,
J.
,
1955
, “
CXXX. On the Linear Work Hardening Mate of Face-Centred Cubic Single Crystals
,”
Philos. Mag.
,
46
(
382
), pp.
1169
1186
.
111.
Lomer
,
W.
,
1951
, “
A Dislocation Reaction in the Face-Centred Cubic Lattice
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
42
(
334
), pp.
1327
1331
.
112.
Garstone
,
J.
, and
Honeycombe
,
R.
,
1957
,
Dislocations and Mechanical Properties of Crystals
,
Wiley
,
New York
, p.
391
.
113.
Robertson
,
I. M.
,
1986
, “
Microtwin Formation in Deformed Nickel
,”
Philos. Mag. A
,
54
(
6
), pp.
821
835
.
114.
Chowdhury
,
P.
,
Canadinc
,
D.
, and
Sehitoglu
,
H.
,
2017
, “
On Deformation Behavior of Fe-Mn Based Structural Alloys
,”
Mater. Sci. Eng.: R: Rep.
,
122
, pp.
1
28
.
115.
Yamakov
,
V.
,
Wolf
,
D.
,
Phillpot
,
S. R.
,
Mukherjee
,
A. K.
, and
Gleiter
,
H.
,
2002
, “
Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation
,”
Nat. Mater.
,
1
(
1
), pp.
45
49
.
116.
Shabib
,
I.
, and
Miller
,
R. E.
,
2009
, “
Deformation Characteristics and Stress–Strain Response of Nanotwinned Copper Via Molecular Dynamics Simulation
,”
Acta Mater.
,
57
(
15
), pp.
4364
4373
.
117.
Li
,
X.
,
Wei
,
Y.
,
Lu
,
L.
,
Lu
,
K.
, and
Gao
,
H.
,
2010
, “
Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals
,”
Nature
,
464
(
7290
), pp.
877
880
.
118.
Zhu
,
T.
, and
Gao
,
H.
,
2012
, “
Plastic Deformation Mechanism in Nanotwinned Metals: An Insight From Molecular Dynamics and Mechanistic Modeling
,”
Scr. Mater.
,
66
(
11
), pp.
843
848
.
119.
Chowdhury
,
P. B.
,
2011
,
Fatigue Crack Growth (FCG) Modeling in the Presence of Nano-Obstacles
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
120.
Chowdhury
,
P.
,
Sehitoglu
,
H.
, and
Rateick
,
R.
,
2017
, “
Damage Tolerance of Carbon-Carbon Composites in Aerospace Application
,”
Carbon
,
126
, pp.
382
393
.https://doi.org/10.1016/j.carbon.2017.10.019
121.
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.
122.
Rice
,
J. R.
, and
Thomson
,
R.
,
1974
, “
Ductile Versus Brittle Behaviour of Crystals
,”
Philos. Mag.
,
29
(
1
), pp.
73
97
.
123.
deCelis
,
B.
,
Argon
,
A. S.
, and
Yip
,
S.
,
1983
, “
Molecular Dynamics Simulation of Crack Tip Processes in Alpha‐Iron and Copper
,”
J. Appl. Phys.
,
54
(
9
), pp.
4864
4878
.
124.
Chowdhury
,
P. B.
,
Sehitoglu
,
H.
, and
Rateick
,
R. G.
,
2014
, “
Predicting Fatigue Resistance of Nano-Twinned Materials—Part I: Role of Cyclic Slip Irreversibility and Peierls Stress
,”
Int. J. Fatigue
,
68
, pp.
277
291
.
125.
Chowdhury
,
P. B.
,
Sehitoglu
,
H.
, and
Rateick
,
R. G.
,
2014
, “
Predicting Fatigue Resistance of Nano-Twinned Materials—Part II: Effective Threshold Stress Intensity Factor Range
,”
Int. J. Fatigue
,
68
, pp.
292
301
.
126.
Xie
,
C.
,
Fang
,
Q. H.
,
Liu
,
X.
,
Guo
,
P. C.
,
Chen
,
J. K.
,
Zhang
,
M. H.
,
Liu
,
Y. W.
,
Rolfe
,
B.
, and
Li
,
L. X.
,
2016
, “
Theoretical Study on the {1¯012} Deformation Twinning and Cracking in Coarse-Grained Magnesium Alloys
,”
Int. J. Plast.
,
82
, pp. 44–61.https://doi.org/10.1016/j.ijplas.2016.02.001
127.
Otsuka
,
K.
, and
Wayman
,
C. M.
,
1999
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
.
128.
Chowdhury
,
P.
,
Patriarca
,
L.
,
Ren
,
G.
, and
Sehitoglu
,
H.
,
2016
, “
Molecular Dynamics Modeling of NiTi Superelasticity in Presence of Nanoprecipitates
,”
Int. J. Plast.
,
81
, pp.
152
167
.
129.
Lai
,
W.
, and
Liu
,
B.
,
2000
, “
Lattice Stability of Some Ni-Ti Alloy Phases Versus Their Chemical Composition and Disordering
,”
J. Phys.: Condens. Matter
,
12
(
5
), p.
L53
.
130.
Chowdhury
,
P.
, and
Sehitoglu
,
H.
,
2016
, “
Significance of Slip Propensity Determination in Shape Memory Alloys
,”
Scr. Mater.
,
119
, pp. 82–87.https://doi.org/10.1016/j.scriptamat.2016.03.017
131.
Chowdhury
,
P.
, and
Sehitoglu
,
H.
,
2017
, “
Deformation Physics of Shape Memory Alloys–Fundamentals at Atomistic Frontier
,”
Prog. Mater. Sci.
,
88
, pp.
49
88
.
132.
Mirzaeifar
,
R.
,
Gall
,
K.
,
Zhu
,
T.
,
Yavari
,
A.
, and
DesRoches
,
R.
,
2014
, “
Structural Transformations in NiTi Shape Memory Alloy Nanowires
,”
J. Appl. Phys.
,
115
(
19
), p.
194307
.
133.
Mutter
,
D.
, and
Nielaba
,
P.
,
2013
, “
Simulation of the Shape Memory Effect in a NiTi Nano Model System
,”
J. Alloys Compd.
,
577
(Suppl. 1), pp.
S83
S87
.
134.
Chowdhury
,
P.
,
Ren
,
G.
, and
Sehitoglu
,
H.
,
2015
, “
NiTi Superelasticity Via Atomistic Simulations
,”
Philos. Mag. Lett.
,
95
(12), pp.
1
13
.https://doi.org/10.1080/09500839.2015.1123819
135.
Chowdhury
,
P.
, and
Sehitoglu
,
H.
,
2016
, “
A Revisit to Atomistic Rationale for Slip in Shape Memory Alloys
,”
Prog. Mater. Sci.
,
85
, pp. 1–42.https://doi.org/10.1016/j.pmatsci.2016.10.002
136.
Wang
,
F.
, and
Agnew
,
S. R.
,
2016
, “
Dislocation Transmutation by Tension Twinning in Magnesium Alloy AZ31
,”
Int. J. Plast.
,
81
, pp.
63
86
.
137.
El Kadiri
,
H.
,
Baird
,
J. C.
,
Kapil
,
J.
,
Oppedal
,
A. L.
,
Cherkaoui
,
M.
, and
Vogel
,
S. C.
,
2013
, “
Flow Asymmetry and Nucleation Stresses of Twinning and Non-Basal Slip in Magnesium
,”
Int. J. Plast.
,
44
, pp.
111
120
.
138.
Ishii
,
A.
,
Li
,
J.
, and
Ogata
,
S.
,
2016
, “
Shuffling-Controlled Versus Strain-Controlled Deformation Twinning: The Case for HCP Mg Twin Nucleation
,”
Int. J. Plast.
,
82
, pp. 32–43.https://doi.org/10.1016/j.ijplas.2016.01.019
139.
Ngan
,
A.
,
1995
, “
A Critique on Some of the Concepts Regarding Planar Faults in Crystals
,”
Philos. Mag. Lett.
,
72
(
1
), pp.
11
19
.
140.
Zimmerman
,
J. A.
,
Gao
,
H.
, and
Abraham
,
F. F.
,
2000
, “
Generalized Stacking Fault Energies for Embedded Atom FCC Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
8
(
2
), p.
103
.
141.
Kibey
,
S.
,
Liu
,
J. B.
,
Johnson
,
D. D.
, and
Sehitoglu
,
H.
,
2006
, “
Generalized Planar Fault Energies and Twinning in Cu–Al Alloys
,”
Appl. Phys. Lett.
,
89
(
19
), p. 191911.https://doi.org/10.1063/1.2387133
142.
Cai
,
W.
, and
Bulatov
,
V. V.
,
2004
, “
Mobility Laws in Dislocation Dynamics Simulations
,”
Mater. Sci. Eng.: A
,
387–389
, pp.
277
281
.
143.
Devincre
,
B.
,
Kubin
,
L.
,
Lemarchand
,
C.
, and
Madec
,
R.
,
2001
, “
Mesoscopic Simulations of Plastic Deformation
,”
Mater. Sci. Eng.: A
,
309–310
, pp.
211
219
.
144.
Amodeo
,
R.
, and
Ghoniem
,
N.
,
1990
, “
Dislocation Dynamics—I: A Proposed Methodology for Deformation Micromechanics
,”
Phys. Rev. B
,
41
(
10
), p.
6958
.
145.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
,
1975
,
Thermodynamics and Kinetics of Slip
,
Pergamon Press
,
Oxford, UK
.
146.
Clayton
,
J. D.
,
2010
,
Nonlinear Mechanics of Crystals
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.